Upload 2 files
Browse files- b1_all_rag_fns.py +426 -0
- gradio_served1.py +57 -0
b1_all_rag_fns.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import json
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import requests
|
6 |
+
|
7 |
+
|
8 |
+
def import_talk_info() -> list[dict]:
|
9 |
+
"""
|
10 |
+
Import talk info from file.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
list[dict]: A list of talk info.
|
14 |
+
"""
|
15 |
+
|
16 |
+
target_file_url = "https://raw.githubusercontent.com/AlanFeder/rgov-2024/main/data/rgov_talks.json"
|
17 |
+
|
18 |
+
response = requests.get(target_file_url)
|
19 |
+
response.raise_for_status() # Ensure we notice if the download fails
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
|
23 |
+
def import_embeds() -> np.ndarray:
|
24 |
+
"""
|
25 |
+
Import embeddings from file.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
np.ndarray: The embeddings.
|
29 |
+
"""
|
30 |
+
|
31 |
+
target_file_url = (
|
32 |
+
"https://raw.githubusercontent.com/AlanFeder/rgov-2024/main/data/embeds.csv"
|
33 |
+
)
|
34 |
+
|
35 |
+
response = requests.get(target_file_url)
|
36 |
+
response.raise_for_status()
|
37 |
+
|
38 |
+
# Use numpy.genfromtxt to read the CSV data from the response text
|
39 |
+
data = np.genfromtxt(
|
40 |
+
io.StringIO(response.text), delimiter=","
|
41 |
+
) # skip header if needed
|
42 |
+
|
43 |
+
return data
|
44 |
+
|
45 |
+
|
46 |
+
def import_data() -> tuple[list[dict], np.ndarray]:
|
47 |
+
# """
|
48 |
+
# Import data from files.
|
49 |
+
|
50 |
+
# Returns:
|
51 |
+
# tuple[list[dict], dict]: A tuple containing the talk info and embeddings.
|
52 |
+
# """
|
53 |
+
|
54 |
+
talk_info = import_talk_info()
|
55 |
+
embeds = import_embeds()
|
56 |
+
|
57 |
+
return talk_info, embeds
|
58 |
+
|
59 |
+
|
60 |
+
def do_1_embed(lt: str, oai_api_key: str) -> np.ndarray:
|
61 |
+
"""
|
62 |
+
Generate embeddings using the OpenAI API for a single text.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
lt (str): A text to generate embeddings for.
|
66 |
+
emb_client (OpenAI): The embedding API client (OpenAI).
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
np.ndarray: The generated embeddings.
|
70 |
+
"""
|
71 |
+
# OpenAI API endpoint for embeddings
|
72 |
+
url = "https://api.openai.com/v1/embeddings"
|
73 |
+
|
74 |
+
# Headers for the API request
|
75 |
+
headers = {
|
76 |
+
"Content-Type": "application/json",
|
77 |
+
"Authorization": f"Bearer {oai_api_key}",
|
78 |
+
}
|
79 |
+
|
80 |
+
# Request payload
|
81 |
+
payload = {"input": lt, "model": "text-embedding-3-small"}
|
82 |
+
|
83 |
+
# Make the API request
|
84 |
+
response = requests.post(url, headers=headers, data=json.dumps(payload))
|
85 |
+
|
86 |
+
# Check if the request was successful
|
87 |
+
if response.status_code == 200:
|
88 |
+
# Parse the JSON response
|
89 |
+
embed_response = response.json()
|
90 |
+
|
91 |
+
# Extract the embedding
|
92 |
+
here_embed = np.array(embed_response["data"][0]["embedding"])
|
93 |
+
|
94 |
+
return here_embed
|
95 |
+
else:
|
96 |
+
print(f"Error: {response.status_code}")
|
97 |
+
print(response.text)
|
98 |
+
|
99 |
+
|
100 |
+
def do_sort(
|
101 |
+
embed_q: np.ndarray, embed_talks: np.ndarray, list_talk_ids: list[str]
|
102 |
+
) -> list[dict[str, str | float]]:
|
103 |
+
"""
|
104 |
+
Sort documents based on their cosine similarity to the query embedding.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
embed_dict (dict[str, np.ndarray]): Dictionary containing document embeddings.
|
108 |
+
arr_q (np.ndarray): Query embedding.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
pd.DataFrame: Sorted dataframe containing document IDs and similarity scores.
|
112 |
+
"""
|
113 |
+
|
114 |
+
# Calculate cosine similarities between query embedding and document embeddings
|
115 |
+
cos_sims = np.dot(embed_talks, embed_q)
|
116 |
+
|
117 |
+
# Get the indices of the best matching video IDs
|
118 |
+
best_match_video_ids = np.argsort(-cos_sims)
|
119 |
+
|
120 |
+
# Get the sorted video IDs based on the best match indices
|
121 |
+
sorted_vids = [
|
122 |
+
{"id0": list_talk_ids[i], "score": -cs}
|
123 |
+
for i, cs in zip(best_match_video_ids, np.sort(-cos_sims))
|
124 |
+
]
|
125 |
+
|
126 |
+
return sorted_vids
|
127 |
+
|
128 |
+
|
129 |
+
def limit_docs(
|
130 |
+
sorted_vids: list[dict],
|
131 |
+
talk_info: dict,
|
132 |
+
n_results: int,
|
133 |
+
) -> list[dict]:
|
134 |
+
"""
|
135 |
+
Limit the retrieved documents based on a score threshold and return the top documents.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
df_sorted (pd.DataFrame): Sorted dataframe containing document IDs and similarity scores.
|
139 |
+
df_talks (pd.DataFrame): Dataframe containing talk information.
|
140 |
+
n_results (int): Number of top documents to retrieve.
|
141 |
+
transcript_dicts (dict[str, dict]): Dictionary containing transcript text for each document ID.
|
142 |
+
|
143 |
+
Returns:
|
144 |
+
dict[str, dict]: Dictionary containing the top documents with their IDs, scores, and text.
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Get the top n_results documents
|
148 |
+
top_vids = sorted_vids[:n_results]
|
149 |
+
|
150 |
+
# Get the top score and calculate the score threshold
|
151 |
+
top_score = top_vids[0]["score"]
|
152 |
+
score_thresh = max(min(0.6, top_score - 0.2), 0.2)
|
153 |
+
|
154 |
+
# Filter the top documents based on the score threshold
|
155 |
+
keep_texts = []
|
156 |
+
for my_vid in top_vids:
|
157 |
+
if my_vid["score"] >= score_thresh:
|
158 |
+
vid_data = talk_info[my_vid["id0"]]
|
159 |
+
vid_data = {**vid_data, **my_vid}
|
160 |
+
keep_texts.append(vid_data)
|
161 |
+
|
162 |
+
return keep_texts
|
163 |
+
|
164 |
+
|
165 |
+
def do_retrieval(
|
166 |
+
query0: str,
|
167 |
+
n_results: int,
|
168 |
+
oai_api_key: str,
|
169 |
+
embeds: np.ndarray,
|
170 |
+
talk_info: dict[str, str | int],
|
171 |
+
) -> list[dict]:
|
172 |
+
"""
|
173 |
+
Retrieve relevant documents based on the user's query.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
query0 (str): The user's query.
|
177 |
+
n_results (int): The number of documents to retrieve.
|
178 |
+
api_client (OpenAI): The API client (OpenAI) for generating embeddings.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
dict[str, dict]: The retrieved documents.
|
182 |
+
"""
|
183 |
+
try:
|
184 |
+
# Generate embeddings for the query
|
185 |
+
arr_q = do_1_embed(query0, oai_api_key=oai_api_key)
|
186 |
+
|
187 |
+
# reformat to be like old version
|
188 |
+
talk_ids = [ti["id0"] for ti in talk_info]
|
189 |
+
talk_info = {ti["id0"]: ti for ti in talk_info}
|
190 |
+
|
191 |
+
# Sort documents based on their cosine similarity to the query embedding
|
192 |
+
sorted_vids = do_sort(embed_q=arr_q, embed_talks=embeds, list_talk_ids=talk_ids)
|
193 |
+
|
194 |
+
# Limit the retrieved documents based on a score threshold
|
195 |
+
keep_texts = limit_docs(
|
196 |
+
sorted_vids=sorted_vids, talk_info=talk_info, n_results=n_results
|
197 |
+
)
|
198 |
+
|
199 |
+
return keep_texts
|
200 |
+
except Exception as e:
|
201 |
+
raise e
|
202 |
+
|
203 |
+
|
204 |
+
SYSTEM_PROMPT = """
|
205 |
+
You are an AI assistant that helps answer questions by searching through video transcripts.
|
206 |
+
I have retrieved the transcripts most likely to answer the user's question.
|
207 |
+
Carefully read through the transcripts to find information that helps answer the question.
|
208 |
+
Be brief - your response should not be more than two paragraphs.
|
209 |
+
Only use information directly stated in the provided transcripts to answer the question.
|
210 |
+
Do not add any information or make any claims that are not explicitly supported by the transcripts.
|
211 |
+
If the transcripts do not contain enough information to answer the question, state that you do not have enough information to provide a complete answer.
|
212 |
+
Format the response clearly. If only one of the transcripts answers the question, don't reference the other and don't explain why its content is irrelevant.
|
213 |
+
Do not speak in the first person. DO NOT write a letter, make an introduction, or salutation.
|
214 |
+
Reference the speaker's name when you say what they said.
|
215 |
+
"""
|
216 |
+
|
217 |
+
|
218 |
+
def set_messages(system_prompt: str, user_prompt: str) -> list[dict[str, str]]:
|
219 |
+
"""
|
220 |
+
Set the messages for the chat completion.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
system_prompt (str): The system prompt.
|
224 |
+
user_prompt (str): The user prompt.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
tuple[list[dict[str, str]], int]: A tuple containing the messages and the total number of input tokens.
|
228 |
+
"""
|
229 |
+
messages1 = [
|
230 |
+
{"role": "system", "content": system_prompt},
|
231 |
+
{"role": "user", "content": user_prompt},
|
232 |
+
]
|
233 |
+
|
234 |
+
return messages1
|
235 |
+
|
236 |
+
|
237 |
+
def make_user_prompt(question: str, keep_texts: list[dict]) -> str:
|
238 |
+
"""
|
239 |
+
Create the user prompt based on the question and the retrieved transcripts.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
question (str): The user's question.
|
243 |
+
keep_texts (dict[str, dict[str, str]]): The retrieved transcripts.
|
244 |
+
|
245 |
+
Returns:
|
246 |
+
str: The user prompt.
|
247 |
+
"""
|
248 |
+
user_prompt = f"""
|
249 |
+
Question: {question}
|
250 |
+
==============================
|
251 |
+
"""
|
252 |
+
if len(keep_texts) > 0:
|
253 |
+
list_strs = []
|
254 |
+
for i, tx_val in enumerate(keep_texts):
|
255 |
+
text0 = tx_val["transcript"]
|
256 |
+
speaker_name = tx_val["Speaker"]
|
257 |
+
list_strs.append(
|
258 |
+
f"Video Transcript {i+1}\nSpeaker: {speaker_name}\n{text0}"
|
259 |
+
)
|
260 |
+
user_prompt += "\n-------\n".join(list_strs)
|
261 |
+
user_prompt += """
|
262 |
+
==============================
|
263 |
+
After analyzing the above video transcripts, please provide a helpful answer to my question. Remember to stay within two paragraphs
|
264 |
+
Address the response to me directly. Do not use any information not explicitly supported by the transcripts. Remember to reference the speaker's name."""
|
265 |
+
else:
|
266 |
+
# If no relevant transcripts are found, generate a default response
|
267 |
+
user_prompt += "No relevant video transcripts were found. Please just return a result that says something like 'I'm sorry, but the answer to {Question} was not found in the transcripts from the R/Gov Conference'"
|
268 |
+
# logger.info(f'User prompt: {user_prompt}')
|
269 |
+
return user_prompt
|
270 |
+
|
271 |
+
|
272 |
+
def parse_1_query_stream(response):
|
273 |
+
# Check if the request was successful
|
274 |
+
if response.status_code == 200:
|
275 |
+
for line in response.iter_lines():
|
276 |
+
if line:
|
277 |
+
line = line.decode("utf-8")
|
278 |
+
if line.startswith("data: "):
|
279 |
+
data = line[6:] # Remove 'data: ' prefix
|
280 |
+
if data != "[DONE]":
|
281 |
+
try:
|
282 |
+
chunk = json.loads(data)
|
283 |
+
content = chunk["choices"][0]["delta"].get("content", "")
|
284 |
+
if content:
|
285 |
+
yield content
|
286 |
+
except json.JSONDecodeError:
|
287 |
+
yield f"Error decoding JSON: {data}"
|
288 |
+
else:
|
289 |
+
yield f"Error: {response.status_code}\n{response.text}"
|
290 |
+
|
291 |
+
|
292 |
+
def parse_1_query_no_stream(response):
|
293 |
+
if response.status_code == 200:
|
294 |
+
try:
|
295 |
+
response1 = response.json()
|
296 |
+
completion = response1["choices"][0]["message"]["content"]
|
297 |
+
return completion
|
298 |
+
except json.JSONDecodeError:
|
299 |
+
return f"Error decoding JSON: {response.text}"
|
300 |
+
else:
|
301 |
+
return f"Error: {response.status_code}\n{response.text}"
|
302 |
+
|
303 |
+
|
304 |
+
def do_1_query(
|
305 |
+
messages1: list[dict[str, str]], oai_api_key: str, stream: bool, model_name: str
|
306 |
+
):
|
307 |
+
"""
|
308 |
+
Generate a response using the specified chat completion model.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
messages1 (list[dict[str, str]]): The messages for the chat completion.
|
312 |
+
gen_client (OpenAI): The generation client (OpenAI).
|
313 |
+
"""
|
314 |
+
|
315 |
+
# OpenAI API endpoint for chat completions
|
316 |
+
url = "https://api.openai.com/v1/chat/completions"
|
317 |
+
|
318 |
+
# Your OpenAI API key
|
319 |
+
# Headers for the API request
|
320 |
+
headers = {
|
321 |
+
"Content-Type": "application/json",
|
322 |
+
"Authorization": f"Bearer {oai_api_key}",
|
323 |
+
}
|
324 |
+
if stream:
|
325 |
+
headers["Accept"] = "text/event-stream" # Required for streaming
|
326 |
+
|
327 |
+
# Model to use
|
328 |
+
model1 = model_name
|
329 |
+
|
330 |
+
# Request payload
|
331 |
+
payload = {
|
332 |
+
"model": model1,
|
333 |
+
"messages": messages1,
|
334 |
+
"seed": 18,
|
335 |
+
"temperature": 0,
|
336 |
+
"stream": stream,
|
337 |
+
}
|
338 |
+
|
339 |
+
# Make the API request
|
340 |
+
response = requests.post(
|
341 |
+
url, headers=headers, data=json.dumps(payload), stream=stream
|
342 |
+
)
|
343 |
+
|
344 |
+
if stream:
|
345 |
+
response1 = parse_1_query_stream(response)
|
346 |
+
else:
|
347 |
+
# Check if the request was successful
|
348 |
+
response1 = parse_1_query_no_stream(response)
|
349 |
+
|
350 |
+
return response1
|
351 |
+
|
352 |
+
|
353 |
+
def do_generation(
|
354 |
+
query1: str, keep_texts: list[dict], oai_api_key: str, stream: bool, model_name: str
|
355 |
+
):
|
356 |
+
"""
|
357 |
+
Generate the chatbot response using the specified generation client.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
query1 (str): The user's query.
|
361 |
+
keep_texts (dict[str, dict[str, str]]): The retrieved relevant texts.
|
362 |
+
gen_client (OpenAI): The generation client (OpenAI).
|
363 |
+
|
364 |
+
Returns:
|
365 |
+
tuple[Stream, int]: A tuple containing the generated response stream and the number of prompt tokens.
|
366 |
+
"""
|
367 |
+
user_prompt = make_user_prompt(query1, keep_texts=keep_texts)
|
368 |
+
messages1 = set_messages(SYSTEM_PROMPT, user_prompt)
|
369 |
+
response = do_1_query(
|
370 |
+
messages1, oai_api_key=oai_api_key, stream=stream, model_name=model_name
|
371 |
+
)
|
372 |
+
|
373 |
+
return response
|
374 |
+
|
375 |
+
|
376 |
+
def calc_cost(
|
377 |
+
prompt_tokens: int, completion_tokens: int, embedding_tokens: int
|
378 |
+
) -> float:
|
379 |
+
"""
|
380 |
+
Calculate the cost in cents based on the number of prompt, completion, and embedding tokens.
|
381 |
+
|
382 |
+
Args:
|
383 |
+
prompt_tokens (int): The number of tokens in the prompt.
|
384 |
+
completion_tokens (int): The number of tokens in the completion.
|
385 |
+
embedding_tokens (int): The number of tokens in the embedding.
|
386 |
+
|
387 |
+
Returns:
|
388 |
+
float: The cost in cents.
|
389 |
+
"""
|
390 |
+
prompt_cost = prompt_tokens / 2000
|
391 |
+
completion_cost = 3 * completion_tokens / 2000
|
392 |
+
embedding_cost = embedding_tokens / 500000
|
393 |
+
|
394 |
+
cost_cents = prompt_cost + completion_cost + embedding_cost
|
395 |
+
|
396 |
+
return cost_cents
|
397 |
+
|
398 |
+
|
399 |
+
def do_rag(
|
400 |
+
user_input: str,
|
401 |
+
oai_api_key: str,
|
402 |
+
model_name: str,
|
403 |
+
stream: bool = False,
|
404 |
+
n_results: int = 3,
|
405 |
+
):
|
406 |
+
# Load the data
|
407 |
+
talk_info, embeds = import_data()
|
408 |
+
# Load the model
|
409 |
+
|
410 |
+
retrieved_docs = do_retrieval(
|
411 |
+
query0=user_input,
|
412 |
+
n_results=n_results,
|
413 |
+
oai_api_key=oai_api_key,
|
414 |
+
embeds=embeds,
|
415 |
+
talk_info=talk_info,
|
416 |
+
)
|
417 |
+
|
418 |
+
response = do_generation(
|
419 |
+
query1=user_input,
|
420 |
+
keep_texts=retrieved_docs,
|
421 |
+
model_name=model_name,
|
422 |
+
oai_api_key=oai_api_key,
|
423 |
+
stream=stream,
|
424 |
+
)
|
425 |
+
|
426 |
+
return response, retrieved_docs
|
gradio_served1.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Get the directory of the current script
|
7 |
+
current_dir = os.path.dirname(__file__)
|
8 |
+
|
9 |
+
# Move up to the parent directory and then to the cousin folder
|
10 |
+
cousin_folder = os.path.join(current_dir, "..", "b1_rag_fns")
|
11 |
+
|
12 |
+
# Add cousin folder to sys.path so it can be imported
|
13 |
+
sys.path.append(os.path.abspath(cousin_folder))
|
14 |
+
|
15 |
+
from b1_all_rag_fns import do_rag
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
|
18 |
+
|
19 |
+
def gr_ch_if(user_input: str, history):
|
20 |
+
oai_api_key = os.getenv("OPENAI_API_KEY")
|
21 |
+
response, _ = do_rag(
|
22 |
+
user_input,
|
23 |
+
stream=False,
|
24 |
+
n_results=3,
|
25 |
+
model_name="gpt-4o-mini",
|
26 |
+
oai_api_key=oai_api_key,
|
27 |
+
)
|
28 |
+
return response
|
29 |
+
|
30 |
+
|
31 |
+
with gr.Blocks() as demo:
|
32 |
+
gr.ChatInterface(
|
33 |
+
fn=gr_ch_if,
|
34 |
+
# type="messages",
|
35 |
+
title="Use Gradio to Run RAG on the previous R/Gov Talks - Chat Interface 1",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Add the static markdown at the bottom
|
39 |
+
gr.Markdown(
|
40 |
+
"""
|
41 |
+
This Gradio app was created for Alan Feder's [talk at the 2024 R/Gov Conference](https://rstats.ai/gov.html). \n\n The Github repository that houses all the code is [here](https://github.com/AlanFeder/rgov-2024) -- feel free to fork it and use it on your own!
|
42 |
+
"""
|
43 |
+
)
|
44 |
+
gr.Divider()
|
45 |
+
gr.Subheader("Contact me!")
|
46 |
+
gr.Image("AJF_Headshot.jpg", width=60)
|
47 |
+
gr.Markdown(
|
48 |
+
"""
|
49 |
+
[Email](mailto:AlanFeder@gmail.com) | [Website](https://www.alanfeder.com/) | [LinkedIn](https://www.linkedin.com/in/alanfeder/) | [GitHub](https://github.com/AlanFeder)
|
50 |
+
"""
|
51 |
+
)
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
demo.launch(
|
55 |
+
share=True,
|
56 |
+
favicon_path="https://raw.githubusercontent.com/AlanFeder/rgov-2024/refs/heads/main/favicon_io/favicon.ico",
|
57 |
+
)
|