Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from NoCodeTextClassifier.EDA import Informations, Visualizations
|
| 6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 7 |
+
from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
|
| 8 |
+
from NoCodeTextClassifier.models import Models
|
| 9 |
+
import os
|
| 10 |
+
import pickle
|
| 11 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 12 |
+
|
| 13 |
+
# Utility functions
|
| 14 |
+
def save_artifacts(obj, folder_name, file_name):
|
| 15 |
+
"""Save artifacts like encoders and vectorizers"""
|
| 16 |
+
os.makedirs(folder_name, exist_ok=True)
|
| 17 |
+
with open(os.path.join(folder_name, file_name), 'wb') as f:
|
| 18 |
+
pickle.dump(obj, f)
|
| 19 |
+
|
| 20 |
+
def load_artifacts(folder_name, file_name):
|
| 21 |
+
"""Load saved artifacts"""
|
| 22 |
+
try:
|
| 23 |
+
with open(os.path.join(folder_name, file_name), 'rb') as f:
|
| 24 |
+
return pickle.load(f)
|
| 25 |
+
except FileNotFoundError:
|
| 26 |
+
st.error(f"File {file_name} not found in {folder_name} folder")
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
+
def load_model(model_name):
|
| 30 |
+
"""Load trained model"""
|
| 31 |
+
try:
|
| 32 |
+
with open(os.path.join('models', model_name), 'rb') as f:
|
| 33 |
+
return pickle.load(f)
|
| 34 |
+
except FileNotFoundError:
|
| 35 |
+
st.error(f"Model {model_name} not found. Please train a model first.")
|
| 36 |
+
return None
|
| 37 |
+
|
| 38 |
+
def predict_text(model_name, text, vectorizer_type="tfidf"):
|
| 39 |
+
"""Make prediction on new text"""
|
| 40 |
+
try:
|
| 41 |
+
# Load model
|
| 42 |
+
model = load_model(model_name)
|
| 43 |
+
if model is None:
|
| 44 |
+
return None, None
|
| 45 |
+
|
| 46 |
+
# Load vectorizer
|
| 47 |
+
vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
|
| 48 |
+
vectorizer = load_artifacts("artifacts", vectorizer_file)
|
| 49 |
+
if vectorizer is None:
|
| 50 |
+
return None, None
|
| 51 |
+
|
| 52 |
+
# Load label encoder
|
| 53 |
+
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 54 |
+
if encoder is None:
|
| 55 |
+
return None, None
|
| 56 |
+
|
| 57 |
+
# Clean and vectorize text
|
| 58 |
+
text_cleaner = TextCleaner()
|
| 59 |
+
clean_text = text_cleaner.clean_text(text)
|
| 60 |
+
|
| 61 |
+
# Transform text using the same vectorizer used during training
|
| 62 |
+
text_vector = vectorizer.transform([clean_text])
|
| 63 |
+
|
| 64 |
+
# Make prediction
|
| 65 |
+
prediction = model.predict(text_vector)
|
| 66 |
+
prediction_proba = None
|
| 67 |
+
|
| 68 |
+
# Get prediction probabilities if available
|
| 69 |
+
if hasattr(model, 'predict_proba'):
|
| 70 |
+
try:
|
| 71 |
+
prediction_proba = model.predict_proba(text_vector)[0]
|
| 72 |
+
except:
|
| 73 |
+
pass
|
| 74 |
+
|
| 75 |
+
# Decode prediction
|
| 76 |
+
predicted_label = encoder.inverse_transform(prediction)[0]
|
| 77 |
+
|
| 78 |
+
return predicted_label, prediction_proba
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
st.error(f"Error during prediction: {str(e)}")
|
| 82 |
+
return None, None
|
| 83 |
+
|
| 84 |
+
# Streamlit App
|
| 85 |
+
st.title('No Code Text Classification App')
|
| 86 |
+
st.write('Understand the behavior of your text data and train a model to classify the text data')
|
| 87 |
+
|
| 88 |
+
# Sidebar
|
| 89 |
+
section = st.sidebar.radio("Choose Section", ["Data Analysis", "Train Model", "Predictions"])
|
| 90 |
+
|
| 91 |
+
# Upload Data
|
| 92 |
+
st.sidebar.subheader("Upload Your Dataset")
|
| 93 |
+
train_data = st.sidebar.file_uploader("Upload training data", type=["csv"])
|
| 94 |
+
test_data = st.sidebar.file_uploader("Upload test data (optional)", type=["csv"])
|
| 95 |
+
|
| 96 |
+
# Global variables to store data and settings
|
| 97 |
+
if 'vectorizer_type' not in st.session_state:
|
| 98 |
+
st.session_state.vectorizer_type = "tfidf"
|
| 99 |
+
|
| 100 |
+
if train_data is not None:
|
| 101 |
+
try:
|
| 102 |
+
train_df = pd.read_csv(train_data, encoding='latin1')
|
| 103 |
+
|
| 104 |
+
if test_data is not None:
|
| 105 |
+
test_df = pd.read_csv(test_data, encoding='latin1')
|
| 106 |
+
else:
|
| 107 |
+
test_df = None
|
| 108 |
+
|
| 109 |
+
st.write("Training Data Preview:")
|
| 110 |
+
st.write(train_df.head(3))
|
| 111 |
+
|
| 112 |
+
columns = train_df.columns.tolist()
|
| 113 |
+
text_data = st.sidebar.selectbox("Choose the text column:", columns)
|
| 114 |
+
target = st.sidebar.selectbox("Choose the target column:", columns)
|
| 115 |
+
|
| 116 |
+
# Process data
|
| 117 |
+
info = Informations(train_df, text_data, target)
|
| 118 |
+
train_df['clean_text'] = info.clean_text()
|
| 119 |
+
train_df['text_length'] = info.text_length()
|
| 120 |
+
|
| 121 |
+
# Handle label encoding manually if the class doesn't store encoder
|
| 122 |
+
from sklearn.preprocessing import LabelEncoder
|
| 123 |
+
label_encoder = LabelEncoder()
|
| 124 |
+
train_df['target'] = label_encoder.fit_transform(train_df[target])
|
| 125 |
+
|
| 126 |
+
# Save label encoder for later use
|
| 127 |
+
os.makedirs("artifacts", exist_ok=True)
|
| 128 |
+
save_artifacts(label_encoder, "artifacts", "encoder.pkl")
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
st.error(f"Error loading data: {str(e)}")
|
| 132 |
+
train_df = None
|
| 133 |
+
info = None
|
| 134 |
+
|
| 135 |
+
# Data Analysis Section
|
| 136 |
+
if section == "Data Analysis":
|
| 137 |
+
if train_data is not None and train_df is not None:
|
| 138 |
+
try:
|
| 139 |
+
st.subheader("Get Insights from the Data")
|
| 140 |
+
|
| 141 |
+
st.write("Data Shape:", info.shape())
|
| 142 |
+
st.write("Class Imbalance:", info.class_imbalanced())
|
| 143 |
+
st.write("Missing Values:", info.missing_values())
|
| 144 |
+
|
| 145 |
+
st.write("Processed Data Preview:")
|
| 146 |
+
st.write(train_df[['clean_text', 'text_length', 'target']].head(3))
|
| 147 |
+
|
| 148 |
+
st.markdown("**Text Length Analysis**")
|
| 149 |
+
st.write(info.analysis_text_length('text_length'))
|
| 150 |
+
|
| 151 |
+
# Calculate correlation manually since we handled encoding separately
|
| 152 |
+
correlation = train_df[['text_length', 'target']].corr().iloc[0, 1]
|
| 153 |
+
st.write(f"Correlation between Text Length and Target: {correlation:.4f}")
|
| 154 |
+
|
| 155 |
+
st.subheader("Visualizations")
|
| 156 |
+
vis = Visualizations(train_df, text_data, target)
|
| 157 |
+
vis.class_distribution()
|
| 158 |
+
vis.text_length_distribution()
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
st.error(f"Error in data analysis: {str(e)}")
|
| 162 |
+
else:
|
| 163 |
+
st.warning("Please upload training data to get insights")
|
| 164 |
+
|
| 165 |
+
# Train Model Section
|
| 166 |
+
elif section == "Train Model":
|
| 167 |
+
if train_data is not None and train_df is not None:
|
| 168 |
+
try:
|
| 169 |
+
st.subheader("Train a Model")
|
| 170 |
+
|
| 171 |
+
# Create two columns for model selection
|
| 172 |
+
col1, col2 = st.columns(2)
|
| 173 |
+
|
| 174 |
+
with col1:
|
| 175 |
+
model = st.radio("Choose the Model", [
|
| 176 |
+
"Logistic Regression", "Decision Tree",
|
| 177 |
+
"Random Forest", "Linear SVC", "SVC",
|
| 178 |
+
"Multinomial Naive Bayes", "Gaussian Naive Bayes"
|
| 179 |
+
])
|
| 180 |
+
|
| 181 |
+
with col2:
|
| 182 |
+
vectorizer_choice = st.radio("Choose Vectorizer", ["Tfidf Vectorizer", "Count Vectorizer"])
|
| 183 |
+
|
| 184 |
+
# Initialize vectorizer
|
| 185 |
+
if vectorizer_choice == "Tfidf Vectorizer":
|
| 186 |
+
vectorizer = TfidfVectorizer(max_features=10000)
|
| 187 |
+
st.session_state.vectorizer_type = "tfidf"
|
| 188 |
+
else:
|
| 189 |
+
vectorizer = CountVectorizer(max_features=10000)
|
| 190 |
+
st.session_state.vectorizer_type = "count"
|
| 191 |
+
|
| 192 |
+
st.write("Training Data Preview:")
|
| 193 |
+
st.write(train_df[['clean_text', 'target']].head(3))
|
| 194 |
+
|
| 195 |
+
# Vectorize text data
|
| 196 |
+
X = vectorizer.fit_transform(train_df['clean_text'])
|
| 197 |
+
y = train_df['target']
|
| 198 |
+
|
| 199 |
+
# Split data
|
| 200 |
+
X_train, X_test, y_train, y_test = process.split_data(X, y)
|
| 201 |
+
st.write(f"Data split - Train: {X_train.shape}, Test: {X_test.shape}")
|
| 202 |
+
|
| 203 |
+
# Save vectorizer for later use
|
| 204 |
+
vectorizer_filename = f"{st.session_state.vectorizer_type}_vectorizer.pkl"
|
| 205 |
+
save_artifacts(vectorizer, "artifacts", vectorizer_filename)
|
| 206 |
+
|
| 207 |
+
if st.button("Start Training"):
|
| 208 |
+
with st.spinner("Training model..."):
|
| 209 |
+
models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
|
| 210 |
+
|
| 211 |
+
# Train selected model
|
| 212 |
+
if model == "Logistic Regression":
|
| 213 |
+
models.LogisticRegression()
|
| 214 |
+
elif model == "Decision Tree":
|
| 215 |
+
models.DecisionTree()
|
| 216 |
+
elif model == "Linear SVC":
|
| 217 |
+
models.LinearSVC()
|
| 218 |
+
elif model == "SVC":
|
| 219 |
+
models.SVC()
|
| 220 |
+
elif model == "Multinomial Naive Bayes":
|
| 221 |
+
models.MultinomialNB()
|
| 222 |
+
elif model == "Random Forest":
|
| 223 |
+
models.RandomForestClassifier()
|
| 224 |
+
elif model == "Gaussian Naive Bayes":
|
| 225 |
+
models.GaussianNB()
|
| 226 |
+
|
| 227 |
+
st.success("Model training completed!")
|
| 228 |
+
st.info("You can now use the 'Predictions' section to classify new text.")
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
st.error(f"Error in model training: {str(e)}")
|
| 232 |
+
else:
|
| 233 |
+
st.warning("Please upload training data to train a model")
|
| 234 |
+
|
| 235 |
+
# Predictions Section
|
| 236 |
+
elif section == "Predictions":
|
| 237 |
+
st.subheader("Perform Predictions on New Text")
|
| 238 |
+
|
| 239 |
+
# Check if models exist
|
| 240 |
+
if os.path.exists("models") and os.listdir("models"):
|
| 241 |
+
# Text input for prediction
|
| 242 |
+
text_input = st.text_area("Enter the text to classify:", height=100)
|
| 243 |
+
|
| 244 |
+
# Model selection
|
| 245 |
+
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
|
| 246 |
+
|
| 247 |
+
if available_models:
|
| 248 |
+
selected_model = st.selectbox("Choose the trained model:", available_models)
|
| 249 |
+
|
| 250 |
+
# Prediction button
|
| 251 |
+
if st.button("Predict", key="single_predict"):
|
| 252 |
+
if text_input.strip():
|
| 253 |
+
with st.spinner("Making prediction..."):
|
| 254 |
+
predicted_label, prediction_proba = predict_text(
|
| 255 |
+
selected_model,
|
| 256 |
+
text_input,
|
| 257 |
+
st.session_state.get('vectorizer_type', 'tfidf')
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
if predicted_label is not None:
|
| 261 |
+
st.success("Prediction completed!")
|
| 262 |
+
|
| 263 |
+
# Display results
|
| 264 |
+
st.markdown("### Prediction Results")
|
| 265 |
+
st.markdown(f"**Input Text:** {text_input}")
|
| 266 |
+
st.markdown(f"**Predicted Class:** {predicted_label}")
|
| 267 |
+
|
| 268 |
+
# Display probabilities if available
|
| 269 |
+
if prediction_proba is not None:
|
| 270 |
+
st.markdown("**Class Probabilities:**")
|
| 271 |
+
|
| 272 |
+
# Load encoder to get class names
|
| 273 |
+
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 274 |
+
if encoder is not None:
|
| 275 |
+
classes = encoder.classes_
|
| 276 |
+
prob_df = pd.DataFrame({
|
| 277 |
+
'Class': classes,
|
| 278 |
+
'Probability': prediction_proba
|
| 279 |
+
}).sort_values('Probability', ascending=False)
|
| 280 |
+
|
| 281 |
+
st.bar_chart(prob_df.set_index('Class'))
|
| 282 |
+
st.dataframe(prob_df)
|
| 283 |
+
else:
|
| 284 |
+
st.warning("Please enter some text to classify")
|
| 285 |
+
else:
|
| 286 |
+
st.warning("No trained models found. Please train a model first.")
|
| 287 |
+
else:
|
| 288 |
+
st.warning("No trained models found. Please go to 'Train Model' section to train a model first.")
|
| 289 |
+
|
| 290 |
+
# Option to classify multiple texts
|
| 291 |
+
st.markdown("---")
|
| 292 |
+
st.subheader("Batch Predictions")
|
| 293 |
+
|
| 294 |
+
uploaded_file = st.file_uploader("Upload a CSV file with text to classify", type=['csv'])
|
| 295 |
+
|
| 296 |
+
if uploaded_file is not None:
|
| 297 |
+
try:
|
| 298 |
+
batch_df = pd.read_csv(uploaded_file, encoding='latin1')
|
| 299 |
+
st.write("Uploaded data preview:")
|
| 300 |
+
st.write(batch_df.head())
|
| 301 |
+
|
| 302 |
+
# Select text column
|
| 303 |
+
text_column = st.selectbox("Select the text column:", batch_df.columns.tolist())
|
| 304 |
+
|
| 305 |
+
if os.path.exists("models") and os.listdir("models"):
|
| 306 |
+
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
|
| 307 |
+
batch_model = st.selectbox("Choose model for batch prediction:", available_models, key="batch_model")
|
| 308 |
+
|
| 309 |
+
if st.button("Run Batch Predictions", key="batch_predict"):
|
| 310 |
+
with st.spinner("Processing batch predictions..."):
|
| 311 |
+
predictions = []
|
| 312 |
+
|
| 313 |
+
for text in batch_df[text_column]:
|
| 314 |
+
pred, _ = predict_text(
|
| 315 |
+
batch_model,
|
| 316 |
+
str(text),
|
| 317 |
+
st.session_state.get('vectorizer_type', 'tfidf')
|
| 318 |
+
)
|
| 319 |
+
predictions.append(pred if pred is not None else "Error")
|
| 320 |
+
|
| 321 |
+
batch_df['Predicted_Class'] = predictions
|
| 322 |
+
|
| 323 |
+
st.success("Batch predictions completed!")
|
| 324 |
+
st.write("Results:")
|
| 325 |
+
st.write(batch_df[[text_column, 'Predicted_Class']])
|
| 326 |
+
|
| 327 |
+
# Download results
|
| 328 |
+
csv = batch_df.to_csv(index=False)
|
| 329 |
+
st.download_button(
|
| 330 |
+
label="Download predictions as CSV",
|
| 331 |
+
data=csv,
|
| 332 |
+
file_name="batch_predictions.csv",
|
| 333 |
+
mime="text/csv"
|
| 334 |
+
)
|
| 335 |
+
except Exception as e:
|
| 336 |
+
st.error(f"Error in batch prediction: {str(e)}")
|