Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,471 +2,335 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
from sklearn.tree import DecisionTreeClassifier
|
| 9 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 10 |
-
from sklearn.svm import LinearSVC, SVC
|
| 11 |
-
from sklearn.naive_bayes import MultinomialNB, GaussianNB
|
| 12 |
-
from sklearn.preprocessing import LabelEncoder
|
| 13 |
-
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 14 |
-
import re
|
| 15 |
-
import string
|
| 16 |
-
import nltk
|
| 17 |
import os
|
| 18 |
import pickle
|
| 19 |
-
import
|
| 20 |
-
import base64
|
| 21 |
-
|
| 22 |
-
# Download required NLTK data
|
| 23 |
-
try:
|
| 24 |
-
nltk.data.find('corpora/stopwords')
|
| 25 |
-
except LookupError:
|
| 26 |
-
nltk.download('stopwords', quiet=True)
|
| 27 |
-
|
| 28 |
-
try:
|
| 29 |
-
nltk.data.find('corpora/wordnet')
|
| 30 |
-
except LookupError:
|
| 31 |
-
nltk.download('wordnet', quiet=True)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
st.session_state.vectorizer_type = 'tfidf'
|
| 52 |
-
if 'train_df' not in st.session_state:
|
| 53 |
-
st.session_state.train_df = None
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
if pd.isna(text):
|
| 63 |
-
return ""
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
| 81 |
-
words = text.split()
|
| 82 |
-
words = [self.lemmatizer.lemmatize(word) for word in words if word not in self.stop_words]
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
"""Safely read uploaded file with multiple encoding attempts"""
|
| 94 |
try:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
try:
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# Try cp1252
|
| 105 |
-
uploaded_file.seek(0)
|
| 106 |
-
return pd.read_csv(uploaded_file, encoding='cp1252')
|
| 107 |
-
except Exception as e:
|
| 108 |
-
st.error(f"Error reading file: {str(e)}")
|
| 109 |
-
return None
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# Class distribution
|
| 121 |
-
insights['class_distribution'] = df[target_col].value_counts().to_dict()
|
| 122 |
-
|
| 123 |
-
# Text length analysis
|
| 124 |
-
df['text_length'] = df[text_col].astype(str).str.len()
|
| 125 |
-
insights['avg_text_length'] = df['text_length'].mean()
|
| 126 |
-
insights['min_text_length'] = df['text_length'].min()
|
| 127 |
-
insights['max_text_length'] = df['text_length'].max()
|
| 128 |
-
|
| 129 |
-
return insights
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
|
| 136 |
-
|
| 137 |
-
# Class distribution bar plot
|
| 138 |
-
class_counts = df[target_col].value_counts()
|
| 139 |
-
ax1.bar(class_counts.index, class_counts.values)
|
| 140 |
-
ax1.set_title('Class Distribution')
|
| 141 |
-
ax1.set_xlabel('Classes')
|
| 142 |
-
ax1.set_ylabel('Count')
|
| 143 |
-
ax1.tick_params(axis='x', rotation=45)
|
| 144 |
-
|
| 145 |
-
# Text length distribution
|
| 146 |
-
df['text_length'] = df[text_col].astype(str).str.len()
|
| 147 |
-
ax2.hist(df['text_length'], bins=30, alpha=0.7)
|
| 148 |
-
ax2.set_title('Text Length Distribution')
|
| 149 |
-
ax2.set_xlabel('Text Length')
|
| 150 |
-
ax2.set_ylabel('Frequency')
|
| 151 |
-
|
| 152 |
-
plt.tight_layout()
|
| 153 |
-
st.pyplot(fig)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
models = {
|
| 160 |
-
'Logistic Regression': LogisticRegression(random_state=42, max_iter=1000),
|
| 161 |
-
'Decision Tree': DecisionTreeClassifier(random_state=42),
|
| 162 |
-
'Random Forest': RandomForestClassifier(random_state=42, n_estimators=100),
|
| 163 |
-
'Linear SVC': LinearSVC(random_state=42, max_iter=1000),
|
| 164 |
-
'SVC': SVC(random_state=42, probability=True),
|
| 165 |
-
'Multinomial Naive Bayes': MultinomialNB(),
|
| 166 |
-
'Gaussian Naive Bayes': GaussianNB()
|
| 167 |
-
}
|
| 168 |
-
|
| 169 |
-
model = models[model_name]
|
| 170 |
-
|
| 171 |
-
# Handle sparse matrices for Gaussian NB
|
| 172 |
-
if model_name == 'Gaussian Naive Bayes':
|
| 173 |
-
if hasattr(X_train, 'toarray'):
|
| 174 |
-
X_train = X_train.toarray()
|
| 175 |
-
X_test = X_test.toarray()
|
| 176 |
-
|
| 177 |
-
# Train model
|
| 178 |
-
model.fit(X_train, y_train)
|
| 179 |
-
|
| 180 |
-
# Make predictions
|
| 181 |
-
y_pred = model.predict(X_test)
|
| 182 |
-
|
| 183 |
-
# Calculate metrics
|
| 184 |
-
accuracy = accuracy_score(y_test, y_pred)
|
| 185 |
-
|
| 186 |
-
return model, accuracy, y_pred
|
| 187 |
|
| 188 |
-
#
|
| 189 |
-
|
| 190 |
-
|
|
|
|
|
|
|
| 191 |
|
| 192 |
-
#
|
| 193 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
#
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
)
|
|
|
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
try:
|
| 205 |
-
with st.spinner("Loading data..."):
|
| 206 |
-
train_df = safe_file_read(train_data)
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
|
|
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
#
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
target_col = st.sidebar.selectbox("🎯 Select target column:", columns, key="target_col")
|
| 217 |
|
| 218 |
-
if
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
text_cleaner = TextCleaner()
|
| 222 |
-
train_df['clean_text'] = train_df[text_col].apply(text_cleaner.clean_text)
|
| 223 |
-
|
| 224 |
-
# Encode labels
|
| 225 |
-
label_encoder = LabelEncoder()
|
| 226 |
-
train_df['encoded_target'] = label_encoder.fit_transform(train_df[target_col])
|
| 227 |
-
st.session_state.label_encoder = label_encoder
|
| 228 |
-
|
| 229 |
-
# Main sections
|
| 230 |
-
tab1, tab2, tab3 = st.tabs(["📊 Data Analysis", "🤖 Train Model", "🔍 Predictions"])
|
| 231 |
-
|
| 232 |
-
# Data Analysis Tab
|
| 233 |
-
with tab1:
|
| 234 |
-
st.header("📊 Data Analysis")
|
| 235 |
-
|
| 236 |
-
col1, col2 = st.columns(2)
|
| 237 |
-
|
| 238 |
-
with col1:
|
| 239 |
-
st.subheader("📈 Dataset Overview")
|
| 240 |
-
insights = get_data_insights(train_df, text_col, target_col)
|
| 241 |
-
|
| 242 |
-
st.metric("Total Samples", insights['shape'][0])
|
| 243 |
-
st.metric("Number of Features", insights['shape'][1])
|
| 244 |
-
st.metric("Average Text Length", f"{insights['avg_text_length']:.1f}")
|
| 245 |
-
|
| 246 |
-
st.subheader("🎯 Class Distribution")
|
| 247 |
-
class_dist_df = pd.DataFrame(list(insights['class_distribution'].items()),
|
| 248 |
-
columns=['Class', 'Count'])
|
| 249 |
-
st.dataframe(class_dist_df, use_container_width=True)
|
| 250 |
-
|
| 251 |
-
with col2:
|
| 252 |
-
st.subheader("📋 Data Preview")
|
| 253 |
-
preview_df = train_df[[text_col, target_col]].head()
|
| 254 |
-
st.dataframe(preview_df, use_container_width=True)
|
| 255 |
-
|
| 256 |
-
st.subheader("🧹 Cleaned Text Preview")
|
| 257 |
-
cleaned_preview = train_df[['clean_text', target_col]].head()
|
| 258 |
-
st.dataframe(cleaned_preview, use_container_width=True)
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
)
|
| 283 |
-
|
| 284 |
-
# Training parameters
|
| 285 |
-
st.subheader("⚙️ Training Parameters")
|
| 286 |
-
col3, col4 = st.columns(2)
|
| 287 |
-
with col3:
|
| 288 |
-
test_size = st.slider("Test size", 0.1, 0.5, 0.2, 0.05)
|
| 289 |
-
max_features = st.number_input("Max features", 1000, 20000, 10000, 1000)
|
| 290 |
-
|
| 291 |
-
if st.button("🚀 Train Model", type="primary"):
|
| 292 |
-
try:
|
| 293 |
-
with st.spinner("Training model... This may take a few minutes."):
|
| 294 |
-
# Initialize vectorizer
|
| 295 |
-
if vectorizer_type == "TF-IDF Vectorizer":
|
| 296 |
-
vectorizer = TfidfVectorizer(max_features=max_features, stop_words='english')
|
| 297 |
-
st.session_state.vectorizer_type = 'tfidf'
|
| 298 |
-
else:
|
| 299 |
-
vectorizer = CountVectorizer(max_features=max_features, stop_words='english')
|
| 300 |
-
st.session_state.vectorizer_type = 'count'
|
| 301 |
-
|
| 302 |
-
# Vectorize text
|
| 303 |
-
X = vectorizer.fit_transform(train_df['clean_text'])
|
| 304 |
-
y = train_df['encoded_target']
|
| 305 |
-
|
| 306 |
-
# Split data
|
| 307 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
| 308 |
-
X, y, test_size=test_size, random_state=42, stratify=y
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
# Train model
|
| 312 |
-
model, accuracy, y_pred = train_model(X_train, X_test, y_train, y_test, model_name)
|
| 313 |
-
|
| 314 |
-
# Store in session state
|
| 315 |
-
st.session_state.trained_model = model
|
| 316 |
-
st.session_state.vectorizer = vectorizer
|
| 317 |
-
|
| 318 |
-
# Display results
|
| 319 |
-
st.success("🎉 Model training completed!")
|
| 320 |
-
|
| 321 |
-
col5, col6 = st.columns(2)
|
| 322 |
-
with col5:
|
| 323 |
-
st.metric("🎯 Accuracy", f"{accuracy:.4f}")
|
| 324 |
-
st.metric("🏋️ Training Samples", len(X_train))
|
| 325 |
-
st.metric("🧪 Test Samples", len(X_test))
|
| 326 |
-
|
| 327 |
-
with col6:
|
| 328 |
-
st.subheader("📊 Classification Report")
|
| 329 |
-
report = classification_report(y_test, y_pred,
|
| 330 |
-
target_names=label_encoder.classes_,
|
| 331 |
-
output_dict=True)
|
| 332 |
-
report_df = pd.DataFrame(report).transpose()
|
| 333 |
-
st.dataframe(report_df.round(3), use_container_width=True)
|
| 334 |
|
| 335 |
-
|
| 336 |
-
st.
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
if st.button("🔮 Predict", type="primary"):
|
| 348 |
-
if user_input.strip():
|
| 349 |
-
try:
|
| 350 |
-
with st.spinner("Making prediction..."):
|
| 351 |
-
# Clean and vectorize input
|
| 352 |
-
text_cleaner = TextCleaner()
|
| 353 |
-
clean_input = text_cleaner.clean_text(user_input)
|
| 354 |
-
input_vector = st.session_state.vectorizer.transform([clean_input])
|
| 355 |
-
|
| 356 |
-
# Handle sparse matrix for Gaussian NB
|
| 357 |
-
if isinstance(st.session_state.trained_model, GaussianNB):
|
| 358 |
-
input_vector = input_vector.toarray()
|
| 359 |
-
|
| 360 |
-
# Make prediction
|
| 361 |
-
prediction = st.session_state.trained_model.predict(input_vector)[0]
|
| 362 |
-
predicted_label = st.session_state.label_encoder.inverse_transform([prediction])[0]
|
| 363 |
-
|
| 364 |
-
# Get probabilities if available
|
| 365 |
-
if hasattr(st.session_state.trained_model, 'predict_proba'):
|
| 366 |
-
try:
|
| 367 |
-
proba = st.session_state.trained_model.predict_proba(input_vector)[0]
|
| 368 |
-
|
| 369 |
-
st.success("🎉 Prediction completed!")
|
| 370 |
-
st.write(f"**Input:** {user_input}")
|
| 371 |
-
st.write(f"**Predicted Class:** {predicted_label}")
|
| 372 |
-
|
| 373 |
-
# Show probabilities
|
| 374 |
-
st.subheader("📊 Class Probabilities")
|
| 375 |
-
prob_df = pd.DataFrame({
|
| 376 |
-
'Class': st.session_state.label_encoder.classes_,
|
| 377 |
-
'Probability': proba
|
| 378 |
-
}).sort_values('Probability', ascending=False)
|
| 379 |
-
|
| 380 |
-
st.bar_chart(prob_df.set_index('Class'))
|
| 381 |
-
st.dataframe(prob_df.round(4), use_container_width=True)
|
| 382 |
-
except:
|
| 383 |
-
st.success("🎉 Prediction completed!")
|
| 384 |
-
st.write(f"**Predicted Class:** {predicted_label}")
|
| 385 |
-
else:
|
| 386 |
-
st.success("🎉 Prediction completed!")
|
| 387 |
-
st.write(f"**Predicted Class:** {predicted_label}")
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
if batch_file is not None:
|
| 399 |
-
try:
|
| 400 |
-
batch_df = safe_file_read(batch_file)
|
| 401 |
-
if batch_df is not None:
|
| 402 |
-
st.write("**Preview:**")
|
| 403 |
-
st.dataframe(batch_df.head(), use_container_width=True)
|
| 404 |
-
|
| 405 |
-
batch_text_col = st.selectbox("Select text column for prediction:",
|
| 406 |
-
batch_df.columns.tolist())
|
| 407 |
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
pred = st.session_state.trained_model.predict(text_vector)[0]
|
| 422 |
-
pred_label = st.session_state.label_encoder.inverse_transform([pred])[0]
|
| 423 |
-
predictions.append(pred_label)
|
| 424 |
-
except:
|
| 425 |
-
predictions.append("Error")
|
| 426 |
-
|
| 427 |
-
batch_df['Predicted_Class'] = predictions
|
| 428 |
-
|
| 429 |
-
st.success("🎉 Batch predictions completed!")
|
| 430 |
-
st.dataframe(batch_df, use_container_width=True)
|
| 431 |
-
|
| 432 |
-
# Download results
|
| 433 |
-
csv_data = batch_df.to_csv(index=False)
|
| 434 |
-
st.download_button(
|
| 435 |
-
label="📥 Download Results",
|
| 436 |
-
data=csv_data,
|
| 437 |
-
file_name="batch_predictions.csv",
|
| 438 |
-
mime="text/csv"
|
| 439 |
-
)
|
| 440 |
-
except Exception as e:
|
| 441 |
-
st.error(f"❌ Error processing batch file: {str(e)}")
|
| 442 |
-
else:
|
| 443 |
-
st.warning("⚠️ No trained model found. Please train a model first in the 'Train Model' tab.")
|
| 444 |
-
else:
|
| 445 |
-
st.warning("⚠️ Please select different columns for text and target.")
|
| 446 |
|
| 447 |
-
|
| 448 |
-
st.error(f"❌ Error loading file: {str(e)}")
|
| 449 |
-
st.info("💡 Try these solutions:")
|
| 450 |
-
st.write("- Check if the file is a valid CSV")
|
| 451 |
-
st.write("- Ensure the file is not corrupted")
|
| 452 |
-
st.write("- Try saving the file with UTF-8 encoding")
|
| 453 |
-
|
| 454 |
-
else:
|
| 455 |
-
st.info("👆 Please upload a CSV file to get started")
|
| 456 |
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
"
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
st.
|
| 472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
| 5 |
+
from NoCodeTextClassifier.EDA import Informations, Visualizations
|
| 6 |
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 7 |
+
from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
|
| 8 |
+
from NoCodeTextClassifier.models import Models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import os
|
| 10 |
import pickle
|
| 11 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Utility functions
|
| 14 |
+
def save_artifacts(obj, folder_name, file_name):
|
| 15 |
+
"""Save artifacts like encoders and vectorizers"""
|
| 16 |
+
os.makedirs(folder_name, exist_ok=True)
|
| 17 |
+
with open(os.path.join(folder_name, file_name), 'wb') as f:
|
| 18 |
+
pickle.dump(obj, f)
|
| 19 |
|
| 20 |
+
def load_artifacts(folder_name, file_name):
|
| 21 |
+
"""Load saved artifacts"""
|
| 22 |
+
try:
|
| 23 |
+
with open(os.path.join(folder_name, file_name), 'rb') as f:
|
| 24 |
+
return pickle.load(f)
|
| 25 |
+
except FileNotFoundError:
|
| 26 |
+
st.error(f"File {file_name} not found in {folder_name} folder")
|
| 27 |
+
return None
|
| 28 |
|
| 29 |
+
def load_model(model_name):
|
| 30 |
+
"""Load trained model"""
|
| 31 |
+
try:
|
| 32 |
+
with open(os.path.join('models', model_name), 'rb') as f:
|
| 33 |
+
return pickle.load(f)
|
| 34 |
+
except FileNotFoundError:
|
| 35 |
+
st.error(f"Model {model_name} not found. Please train a model first.")
|
| 36 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
def predict_text(model_name, text, vectorizer_type="tfidf"):
|
| 39 |
+
"""Make prediction on new text"""
|
| 40 |
+
try:
|
| 41 |
+
# Load model
|
| 42 |
+
model = load_model(model_name)
|
| 43 |
+
if model is None:
|
| 44 |
+
return None, None
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Load vectorizer
|
| 47 |
+
vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
|
| 48 |
+
vectorizer = load_artifacts("artifacts", vectorizer_file)
|
| 49 |
+
if vectorizer is None:
|
| 50 |
+
return None, None
|
| 51 |
|
| 52 |
+
# Load label encoder
|
| 53 |
+
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 54 |
+
if encoder is None:
|
| 55 |
+
return None, None
|
| 56 |
|
| 57 |
+
# Clean and vectorize text
|
| 58 |
+
text_cleaner = TextCleaner()
|
| 59 |
+
clean_text = text_cleaner.clean_text(text)
|
| 60 |
|
| 61 |
+
# Transform text using the same vectorizer used during training
|
| 62 |
+
text_vector = vectorizer.transform([clean_text])
|
| 63 |
+
|
| 64 |
+
# Make prediction
|
| 65 |
+
prediction = model.predict(text_vector)
|
| 66 |
+
prediction_proba = None
|
| 67 |
+
|
| 68 |
+
# Get prediction probabilities if available
|
| 69 |
+
if hasattr(model, 'predict_proba'):
|
| 70 |
+
try:
|
| 71 |
+
prediction_proba = model.predict_proba(text_vector)[0]
|
| 72 |
+
except:
|
| 73 |
+
pass
|
| 74 |
|
| 75 |
+
# Decode prediction
|
| 76 |
+
predicted_label = encoder.inverse_transform(prediction)[0]
|
| 77 |
|
| 78 |
+
return predicted_label, prediction_proba
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
except Exception as e:
|
| 81 |
+
st.error(f"Error during prediction: {str(e)}")
|
| 82 |
+
return None, None
|
| 83 |
|
| 84 |
+
# Streamlit App
|
| 85 |
+
st.title('No Code Text Classification App')
|
| 86 |
+
st.write('Understand the behavior of your text data and train a model to classify the text data')
|
| 87 |
+
|
| 88 |
+
# Sidebar
|
| 89 |
+
section = st.sidebar.radio("Choose Section", ["Data Analysis", "Train Model", "Predictions"])
|
| 90 |
+
|
| 91 |
+
# Upload Data
|
| 92 |
+
st.sidebar.subheader("Upload Your Dataset")
|
| 93 |
+
train_data = st.sidebar.file_uploader("Upload training data", type=["csv"])
|
| 94 |
+
test_data = st.sidebar.file_uploader("Upload test data (optional)", type=["csv"])
|
| 95 |
+
|
| 96 |
+
# Global variables to store data and settings
|
| 97 |
+
if 'vectorizer_type' not in st.session_state:
|
| 98 |
+
st.session_state.vectorizer_type = "tfidf"
|
| 99 |
|
| 100 |
+
if train_data is not None:
|
|
|
|
| 101 |
try:
|
| 102 |
+
train_df = pd.read_csv(train_data, encoding='latin1')
|
| 103 |
+
|
| 104 |
+
if test_data is not None:
|
| 105 |
+
test_df = pd.read_csv(test_data, encoding='latin1')
|
| 106 |
+
else:
|
| 107 |
+
test_df = None
|
| 108 |
+
|
| 109 |
+
st.write("Training Data Preview:")
|
| 110 |
+
st.write(train_df.head(3))
|
| 111 |
+
|
| 112 |
+
columns = train_df.columns.tolist()
|
| 113 |
+
text_data = st.sidebar.selectbox("Choose the text column:", columns)
|
| 114 |
+
target = st.sidebar.selectbox("Choose the target column:", columns)
|
| 115 |
+
|
| 116 |
+
# Process data
|
| 117 |
+
info = Informations(train_df, text_data, target)
|
| 118 |
+
train_df['clean_text'] = info.clean_text()
|
| 119 |
+
train_df['text_length'] = info.text_length()
|
| 120 |
+
|
| 121 |
+
# Handle label encoding manually if the class doesn't store encoder
|
| 122 |
+
from sklearn.preprocessing import LabelEncoder
|
| 123 |
+
label_encoder = LabelEncoder()
|
| 124 |
+
train_df['target'] = label_encoder.fit_transform(train_df[target])
|
| 125 |
+
|
| 126 |
+
# Save label encoder for later use
|
| 127 |
+
os.makedirs("artifacts", exist_ok=True)
|
| 128 |
+
save_artifacts(label_encoder, "artifacts", "encoder.pkl")
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
st.error(f"Error loading data: {str(e)}")
|
| 132 |
+
train_df = None
|
| 133 |
+
info = None
|
| 134 |
+
|
| 135 |
+
# Data Analysis Section
|
| 136 |
+
if section == "Data Analysis":
|
| 137 |
+
if train_data is not None and train_df is not None:
|
| 138 |
try:
|
| 139 |
+
st.subheader("Get Insights from the Data")
|
| 140 |
+
|
| 141 |
+
st.write("Data Shape:", info.shape())
|
| 142 |
+
st.write("Class Imbalance:", info.class_imbalanced())
|
| 143 |
+
st.write("Missing Values:", info.missing_values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
+
st.write("Processed Data Preview:")
|
| 146 |
+
st.write(train_df[['clean_text', 'text_length', 'target']].head(3))
|
| 147 |
+
|
| 148 |
+
st.markdown("**Text Length Analysis**")
|
| 149 |
+
st.write(info.analysis_text_length('text_length'))
|
| 150 |
+
|
| 151 |
+
# Calculate correlation manually since we handled encoding separately
|
| 152 |
+
correlation = train_df[['text_length', 'target']].corr().iloc[0, 1]
|
| 153 |
+
st.write(f"Correlation between Text Length and Target: {correlation:.4f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
st.subheader("Visualizations")
|
| 156 |
+
vis = Visualizations(train_df, text_data, target)
|
| 157 |
+
vis.class_distribution()
|
| 158 |
+
vis.text_length_distribution()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
except Exception as e:
|
| 161 |
+
st.error(f"Error in data analysis: {str(e)}")
|
| 162 |
+
else:
|
| 163 |
+
st.warning("Please upload training data to get insights")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
# Train Model Section
|
| 166 |
+
elif section == "Train Model":
|
| 167 |
+
if train_data is not None and train_df is not None:
|
| 168 |
+
try:
|
| 169 |
+
st.subheader("Train a Model")
|
| 170 |
|
| 171 |
+
# Create two columns for model selection
|
| 172 |
+
col1, col2 = st.columns(2)
|
| 173 |
+
|
| 174 |
+
with col1:
|
| 175 |
+
model = st.radio("Choose the Model", [
|
| 176 |
+
"Logistic Regression", "Decision Tree",
|
| 177 |
+
"Random Forest", "Linear SVC", "SVC",
|
| 178 |
+
"Multinomial Naive Bayes", "Gaussian Naive Bayes"
|
| 179 |
+
])
|
| 180 |
+
|
| 181 |
+
with col2:
|
| 182 |
+
vectorizer_choice = st.radio("Choose Vectorizer", ["Tfidf Vectorizer", "Count Vectorizer"])
|
| 183 |
|
| 184 |
+
# Initialize vectorizer
|
| 185 |
+
if vectorizer_choice == "Tfidf Vectorizer":
|
| 186 |
+
vectorizer = TfidfVectorizer(max_features=10000)
|
| 187 |
+
st.session_state.vectorizer_type = "tfidf"
|
| 188 |
+
else:
|
| 189 |
+
vectorizer = CountVectorizer(max_features=10000)
|
| 190 |
+
st.session_state.vectorizer_type = "count"
|
| 191 |
|
| 192 |
+
st.write("Training Data Preview:")
|
| 193 |
+
st.write(train_df[['clean_text', 'target']].head(3))
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
# Vectorize text data
|
| 196 |
+
X = vectorizer.fit_transform(train_df['clean_text'])
|
| 197 |
+
y = train_df['target']
|
| 198 |
|
| 199 |
+
# Split data
|
| 200 |
+
X_train, X_test, y_train, y_test = process.split_data(X, y)
|
| 201 |
+
st.write(f"Data split - Train: {X_train.shape}, Test: {X_test.shape}")
|
| 202 |
|
| 203 |
+
# Save vectorizer for later use
|
| 204 |
+
vectorizer_filename = f"{st.session_state.vectorizer_type}_vectorizer.pkl"
|
| 205 |
+
save_artifacts(vectorizer, "artifacts", vectorizer_filename)
|
|
|
|
| 206 |
|
| 207 |
+
if st.button("Start Training"):
|
| 208 |
+
with st.spinner("Training model..."):
|
| 209 |
+
models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
# Train selected model
|
| 212 |
+
if model == "Logistic Regression":
|
| 213 |
+
models.LogisticRegression()
|
| 214 |
+
elif model == "Decision Tree":
|
| 215 |
+
models.DecisionTree()
|
| 216 |
+
elif model == "Linear SVC":
|
| 217 |
+
models.LinearSVC()
|
| 218 |
+
elif model == "SVC":
|
| 219 |
+
models.SVC()
|
| 220 |
+
elif model == "Multinomial Naive Bayes":
|
| 221 |
+
models.MultinomialNB()
|
| 222 |
+
elif model == "Random Forest":
|
| 223 |
+
models.RandomForestClassifier()
|
| 224 |
+
elif model == "Gaussian Naive Bayes":
|
| 225 |
+
models.GaussianNB()
|
| 226 |
|
| 227 |
+
st.success("Model training completed!")
|
| 228 |
+
st.info("You can now use the 'Predictions' section to classify new text.")
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
st.error(f"Error in model training: {str(e)}")
|
| 232 |
+
else:
|
| 233 |
+
st.warning("Please upload training data to train a model")
|
| 234 |
+
|
| 235 |
+
# Predictions Section
|
| 236 |
+
elif section == "Predictions":
|
| 237 |
+
st.subheader("Perform Predictions on New Text")
|
| 238 |
+
|
| 239 |
+
# Check if models exist
|
| 240 |
+
if os.path.exists("models") and os.listdir("models"):
|
| 241 |
+
# Text input for prediction
|
| 242 |
+
text_input = st.text_area("Enter the text to classify:", height=100)
|
| 243 |
+
|
| 244 |
+
# Model selection
|
| 245 |
+
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
|
| 246 |
+
|
| 247 |
+
if available_models:
|
| 248 |
+
selected_model = st.selectbox("Choose the trained model:", available_models)
|
| 249 |
+
|
| 250 |
+
# Prediction button
|
| 251 |
+
if st.button("Predict", key="single_predict"):
|
| 252 |
+
if text_input.strip():
|
| 253 |
+
with st.spinner("Making prediction..."):
|
| 254 |
+
predicted_label, prediction_proba = predict_text(
|
| 255 |
+
selected_model,
|
| 256 |
+
text_input,
|
| 257 |
+
st.session_state.get('vectorizer_type', 'tfidf')
|
| 258 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
+
if predicted_label is not None:
|
| 261 |
+
st.success("Prediction completed!")
|
| 262 |
+
|
| 263 |
+
# Display results
|
| 264 |
+
st.markdown("### Prediction Results")
|
| 265 |
+
st.markdown(f"**Input Text:** {text_input}")
|
| 266 |
+
st.markdown(f"**Predicted Class:** {predicted_label}")
|
| 267 |
+
|
| 268 |
+
# Display probabilities if available
|
| 269 |
+
if prediction_proba is not None:
|
| 270 |
+
st.markdown("**Class Probabilities:**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
+
# Load encoder to get class names
|
| 273 |
+
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 274 |
+
if encoder is not None:
|
| 275 |
+
classes = encoder.classes_
|
| 276 |
+
prob_df = pd.DataFrame({
|
| 277 |
+
'Class': classes,
|
| 278 |
+
'Probability': prediction_proba
|
| 279 |
+
}).sort_values('Probability', ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
st.bar_chart(prob_df.set_index('Class'))
|
| 282 |
+
st.dataframe(prob_df)
|
| 283 |
+
else:
|
| 284 |
+
st.warning("Please enter some text to classify")
|
| 285 |
+
else:
|
| 286 |
+
st.warning("No trained models found. Please train a model first.")
|
| 287 |
+
else:
|
| 288 |
+
st.warning("No trained models found. Please go to 'Train Model' section to train a model first.")
|
| 289 |
+
|
| 290 |
+
# Option to classify multiple texts
|
| 291 |
+
st.markdown("---")
|
| 292 |
+
st.subheader("Batch Predictions")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
+
uploaded_file = st.file_uploader("Upload a CSV file with text to classify", type=['csv'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
+
if uploaded_file is not None:
|
| 297 |
+
try:
|
| 298 |
+
batch_df = pd.read_csv(uploaded_file, encoding='latin1')
|
| 299 |
+
st.write("Uploaded data preview:")
|
| 300 |
+
st.write(batch_df.head())
|
| 301 |
+
|
| 302 |
+
# Select text column
|
| 303 |
+
text_column = st.selectbox("Select the text column:", batch_df.columns.tolist())
|
| 304 |
+
|
| 305 |
+
if os.path.exists("models") and os.listdir("models"):
|
| 306 |
+
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
|
| 307 |
+
batch_model = st.selectbox("Choose model for batch prediction:", available_models, key="batch_model")
|
| 308 |
+
|
| 309 |
+
if st.button("Run Batch Predictions", key="batch_predict"):
|
| 310 |
+
with st.spinner("Processing batch predictions..."):
|
| 311 |
+
predictions = []
|
| 312 |
+
|
| 313 |
+
for text in batch_df[text_column]:
|
| 314 |
+
pred, _ = predict_text(
|
| 315 |
+
batch_model,
|
| 316 |
+
str(text),
|
| 317 |
+
st.session_state.get('vectorizer_type', 'tfidf')
|
| 318 |
+
)
|
| 319 |
+
predictions.append(pred if pred is not None else "Error")
|
| 320 |
+
|
| 321 |
+
batch_df['Predicted_Class'] = predictions
|
| 322 |
+
|
| 323 |
+
st.success("Batch predictions completed!")
|
| 324 |
+
st.write("Results:")
|
| 325 |
+
st.write(batch_df[[text_column, 'Predicted_Class']])
|
| 326 |
+
|
| 327 |
+
# Download results
|
| 328 |
+
csv = batch_df.to_csv(index=False)
|
| 329 |
+
st.download_button(
|
| 330 |
+
label="Download predictions as CSV",
|
| 331 |
+
data=csv,
|
| 332 |
+
file_name="batch_predictions.csv",
|
| 333 |
+
mime="text/csv"
|
| 334 |
+
)
|
| 335 |
+
except Exception as e:
|
| 336 |
+
st.error(f"Error in batch prediction: {str(e)}")
|