Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,465 +2,610 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
import pickle
|
| 7 |
import io
|
| 8 |
-
import traceback
|
| 9 |
-
import sys
|
| 10 |
import base64
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
-
# Import ML libraries with error handling
|
| 14 |
-
try:
|
| 15 |
-
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 16 |
-
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 17 |
-
from sklearn.preprocessing import LabelEncoder
|
| 18 |
-
st.success("✅ Sklearn imported successfully")
|
| 19 |
-
except ImportError as e:
|
| 20 |
-
st.error(f"❌ Sklearn import error: {e}")
|
| 21 |
-
|
| 22 |
-
# Import custom modules with error handling
|
| 23 |
-
try:
|
| 24 |
-
from NoCodeTextClassifier.EDA import Informations, Visualizations
|
| 25 |
-
from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
|
| 26 |
-
from NoCodeTextClassifier.models import Models
|
| 27 |
-
st.success("✅ NoCodeTextClassifier imported successfully")
|
| 28 |
-
except ImportError as e:
|
| 29 |
-
st.error(f"❌ NoCodeTextClassifier import error: {e}")
|
| 30 |
-
st.info("Please ensure NoCodeTextClassifier package is installed")
|
| 31 |
-
|
| 32 |
-
# Set page config
|
| 33 |
-
st.set_page_config(page_title="Fixed Text Classification", page_icon="🔧", layout="wide")
|
| 34 |
-
|
| 35 |
-
# Debug section
|
| 36 |
-
st.sidebar.header("🔍 Debug Information")
|
| 37 |
-
debug_mode = st.sidebar.checkbox("Enable Debug Mode", value=True)
|
| 38 |
-
|
| 39 |
-
def debug_log(message, level="INFO"):
|
| 40 |
-
"""Debug logging function"""
|
| 41 |
-
if debug_mode:
|
| 42 |
-
timestamp = datetime.now().strftime("%H:%M:%S")
|
| 43 |
-
st.sidebar.write(f"**{timestamp} [{level}]:** {message}")
|
| 44 |
-
|
| 45 |
-
# Alternative file upload methods
|
| 46 |
-
def alternative_file_upload():
|
| 47 |
-
"""Alternative file upload methods to bypass 403 error"""
|
| 48 |
-
st.subheader("🔧 Alternative File Upload Methods")
|
| 49 |
-
|
| 50 |
-
# Method 1: Text area paste
|
| 51 |
-
st.markdown("### Method 1: Copy-Paste CSV Content")
|
| 52 |
-
st.info("Copy your CSV content and paste it in the text area below")
|
| 53 |
-
|
| 54 |
-
csv_content = st.text_area(
|
| 55 |
-
"Paste your CSV content here:",
|
| 56 |
-
height=200,
|
| 57 |
-
placeholder="name,age,city\nJohn,25,New York\nJane,30,London"
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
if csv_content and st.button("Load from Text Area", type="primary"):
|
| 61 |
-
try:
|
| 62 |
-
df = pd.read_csv(io.StringIO(csv_content))
|
| 63 |
-
st.success("✅ CSV loaded from text area!")
|
| 64 |
-
return df, "text_area"
|
| 65 |
-
except Exception as e:
|
| 66 |
-
st.error(f"Error parsing CSV: {e}")
|
| 67 |
-
return None, None
|
| 68 |
-
|
| 69 |
-
# Method 2: Base64 upload (for advanced users)
|
| 70 |
-
st.markdown("### Method 2: Base64 Upload")
|
| 71 |
-
with st.expander("For Advanced Users - Base64 Upload"):
|
| 72 |
-
st.info("Convert your CSV to base64 and paste here")
|
| 73 |
-
st.code("""
|
| 74 |
-
# Python code to convert CSV to base64:
|
| 75 |
-
import base64
|
| 76 |
-
with open('your_file.csv', 'rb') as f:
|
| 77 |
-
encoded = base64.b64encode(f.read()).decode()
|
| 78 |
-
print(encoded)
|
| 79 |
-
""")
|
| 80 |
-
|
| 81 |
-
base64_content = st.text_area("Paste base64 encoded CSV:", height=100)
|
| 82 |
-
|
| 83 |
-
if base64_content and st.button("Load from Base64"):
|
| 84 |
-
try:
|
| 85 |
-
decoded = base64.b64decode(base64_content)
|
| 86 |
-
df = pd.read_csv(io.BytesIO(decoded))
|
| 87 |
-
st.success("✅ CSV loaded from base64!")
|
| 88 |
-
return df, "base64"
|
| 89 |
-
except Exception as e:
|
| 90 |
-
st.error(f"Error decoding base64: {e}")
|
| 91 |
-
return None, None
|
| 92 |
-
|
| 93 |
-
# Method 3: Sample data
|
| 94 |
-
st.markdown("### Method 3: Use Sample Data")
|
| 95 |
-
if st.button("Load Sample Text Classification Data"):
|
| 96 |
-
# Create sample data
|
| 97 |
-
sample_data = {
|
| 98 |
-
'text': [
|
| 99 |
-
'I love this product, it works great!',
|
| 100 |
-
'This is terrible, waste of money',
|
| 101 |
-
'Good quality and fast delivery',
|
| 102 |
-
'Not satisfied with the purchase',
|
| 103 |
-
'Excellent service and support',
|
| 104 |
-
'Poor quality, arrived damaged',
|
| 105 |
-
'Amazing product, highly recommend',
|
| 106 |
-
'Disappointed with the results'
|
| 107 |
-
],
|
| 108 |
-
'label': ['positive', 'negative', 'positive', 'negative',
|
| 109 |
-
'positive', 'negative', 'positive', 'negative']
|
| 110 |
-
}
|
| 111 |
-
df = pd.DataFrame(sample_data)
|
| 112 |
-
st.success("✅ Sample data loaded!")
|
| 113 |
-
return df, "sample"
|
| 114 |
-
|
| 115 |
-
return None, None
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
#
|
| 122 |
-
uploaded_file
|
| 123 |
-
"Choose a CSV file",
|
| 124 |
-
type=['csv'],
|
| 125 |
-
help="If upload fails with 403 error, use alternative methods below"
|
| 126 |
-
)
|
| 127 |
|
| 128 |
-
|
| 129 |
try:
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
except Exception as e:
|
| 135 |
-
st.error(f"
|
| 136 |
-
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
# Utility functions (same as before but with debug)
|
| 146 |
def save_artifacts(obj, folder_name, file_name):
|
| 147 |
-
"""Save artifacts
|
| 148 |
-
debug_log(f"💾 Saving {file_name} to {folder_name}")
|
| 149 |
try:
|
| 150 |
os.makedirs(folder_name, exist_ok=True)
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
with open(full_path, 'wb') as f:
|
| 154 |
pickle.dump(obj, f)
|
| 155 |
-
|
| 156 |
-
debug_log(f"✅ Successfully saved {file_name}")
|
| 157 |
return True
|
| 158 |
-
|
| 159 |
except Exception as e:
|
| 160 |
-
|
| 161 |
-
st.error(f"Save error: {str(e)}")
|
| 162 |
return False
|
| 163 |
|
| 164 |
def load_artifacts(folder_name, file_name):
|
| 165 |
-
"""Load artifacts
|
| 166 |
-
debug_log(f"📂 Loading {file_name} from {folder_name}")
|
| 167 |
try:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
with open(full_path, 'rb') as f:
|
| 175 |
-
obj = pickle.load(f)
|
| 176 |
-
|
| 177 |
-
debug_log(f"✅ Successfully loaded {file_name}")
|
| 178 |
-
return obj
|
| 179 |
-
|
| 180 |
except Exception as e:
|
| 181 |
-
|
| 182 |
return None
|
| 183 |
|
| 184 |
def load_model(model_name):
|
| 185 |
-
"""Load model
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
def predict_text(model_name, text, vectorizer_type="tfidf"):
|
| 190 |
-
"""Make prediction
|
| 191 |
-
debug_log(f"🔮 Starting prediction with {model_name}")
|
| 192 |
-
|
| 193 |
try:
|
| 194 |
-
# Load
|
| 195 |
model = load_model(model_name)
|
| 196 |
if model is None:
|
| 197 |
return None, None
|
| 198 |
|
|
|
|
| 199 |
vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
|
| 200 |
vectorizer = load_artifacts("artifacts", vectorizer_file)
|
| 201 |
if vectorizer is None:
|
| 202 |
return None, None
|
| 203 |
|
|
|
|
| 204 |
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 205 |
if encoder is None:
|
| 206 |
return None, None
|
| 207 |
|
| 208 |
-
|
| 209 |
text_cleaner = TextCleaner()
|
| 210 |
clean_text = text_cleaner.clean_text(text)
|
| 211 |
|
| 212 |
-
|
| 213 |
text_vector = vectorizer.transform([clean_text])
|
| 214 |
|
| 215 |
-
|
| 216 |
prediction = model.predict(text_vector)
|
| 217 |
prediction_proba = None
|
| 218 |
|
|
|
|
| 219 |
if hasattr(model, 'predict_proba'):
|
| 220 |
try:
|
| 221 |
prediction_proba = model.predict_proba(text_vector)[0]
|
| 222 |
except:
|
| 223 |
-
|
| 224 |
|
|
|
|
| 225 |
predicted_label = encoder.inverse_transform(prediction)[0]
|
| 226 |
-
debug_log(f"✅ Prediction complete: {predicted_label}")
|
| 227 |
|
| 228 |
return predicted_label, prediction_proba
|
| 229 |
|
| 230 |
except Exception as e:
|
| 231 |
-
|
| 232 |
-
st.error(f"Prediction error: {str(e)}")
|
| 233 |
return None, None
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
# Main App
|
| 236 |
-
st.title('
|
| 237 |
-
st.
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
st.sidebar.subheader("🖥️ Environment Info")
|
| 242 |
-
st.sidebar.write(f"Python version: {sys.version}")
|
| 243 |
-
st.sidebar.write(f"Streamlit version: {st.__version__}")
|
| 244 |
-
st.sidebar.write(f"Current directory: {os.getcwd()}")
|
| 245 |
-
|
| 246 |
-
# Navigation
|
| 247 |
-
section = st.sidebar.radio("Choose Section", [
|
| 248 |
-
"Upload Data", "Data Analysis", "Train Model", "Predictions"
|
| 249 |
-
])
|
| 250 |
-
|
| 251 |
-
# Session state
|
| 252 |
-
if 'train_df' not in st.session_state:
|
| 253 |
-
st.session_state.train_df = None
|
| 254 |
-
if 'upload_method' not in st.session_state:
|
| 255 |
-
st.session_state.upload_method = None
|
| 256 |
if 'vectorizer_type' not in st.session_state:
|
| 257 |
st.session_state.vectorizer_type = "tfidf"
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
#
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
-
if
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
st.metric("Rows", df.shape[0])
|
| 276 |
-
with col2:
|
| 277 |
-
st.metric("Columns", df.shape[1])
|
| 278 |
-
with col3:
|
| 279 |
-
st.metric("Missing Values", df.isnull().sum().sum())
|
| 280 |
|
| 281 |
-
st.
|
| 282 |
-
|
|
|
|
| 283 |
|
| 284 |
-
|
| 285 |
-
with col1:
|
| 286 |
-
text_column = st.selectbox("Select text column:", columns)
|
| 287 |
-
with col2:
|
| 288 |
-
target_column = st.selectbox("Select target/label column:", columns)
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
st.
|
|
|
|
|
|
|
|
|
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
-
#
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
st.bar_chart(target_counts)
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
# Data Analysis Section
|
| 307 |
-
elif section == "Data Analysis":
|
| 308 |
-
if st.session_state.train_df is not None:
|
| 309 |
-
df = st.session_state.train_df
|
| 310 |
-
text_col = st.session_state.get('text_column')
|
| 311 |
-
target_col = st.session_state.get('target_column')
|
| 312 |
-
|
| 313 |
-
if text_col and target_col:
|
| 314 |
-
st.subheader("📊 Data Analysis")
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
-
#
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
st.write(
|
| 327 |
-
st.write("**Class Distribution:**", info.class_imbalanced())
|
| 328 |
-
st.write("**Missing Values:**", info.missing_values())
|
| 329 |
|
| 330 |
-
|
| 331 |
-
st.write("**Text Length Analysis:**")
|
| 332 |
st.write(info.analysis_text_length('text_length'))
|
| 333 |
|
| 334 |
-
#
|
| 335 |
-
|
|
|
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
except Exception as e:
|
| 347 |
-
st.error(f"Error in analysis: {e}")
|
| 348 |
-
debug_log(f"Analysis error: {e}", "ERROR")
|
| 349 |
-
else:
|
| 350 |
-
st.warning("Please select text and target columns in the Upload Data section.")
|
| 351 |
else:
|
| 352 |
-
st.warning("Please upload data
|
| 353 |
-
|
| 354 |
-
# Train Model Section
|
| 355 |
-
elif section == "Train Model":
|
| 356 |
-
if st.session_state.train_df is not None:
|
| 357 |
-
df = st.session_state.train_df
|
| 358 |
-
text_col = st.session_state.get('text_column')
|
| 359 |
-
target_col = st.session_state.get('target_column')
|
| 360 |
|
| 361 |
-
|
| 362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
|
|
|
| 364 |
col1, col2 = st.columns(2)
|
| 365 |
-
|
| 366 |
with col1:
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
"
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
|
| 372 |
with col2:
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
-
|
| 377 |
-
|
|
|
|
|
|
|
|
|
|
| 378 |
try:
|
| 379 |
-
#
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
st.session_state.vectorizer_type = "count"
|
| 386 |
|
| 387 |
-
#
|
| 388 |
-
|
| 389 |
-
y =
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
# Split data
|
| 393 |
X_train, X_test, y_train, y_test = process.split_data(X, y)
|
| 394 |
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
# Train model
|
| 400 |
models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
|
| 401 |
|
| 402 |
-
if
|
| 403 |
models.LogisticRegression()
|
| 404 |
-
elif
|
| 405 |
models.DecisionTree()
|
| 406 |
-
elif
|
| 407 |
-
models.RandomForestClassifier()
|
| 408 |
-
elif model_choice == "Linear SVC":
|
| 409 |
models.LinearSVC()
|
| 410 |
-
elif
|
| 411 |
models.SVC()
|
| 412 |
-
elif
|
| 413 |
models.MultinomialNB()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
-
st.success("🎉 Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
|
| 417 |
except Exception as e:
|
| 418 |
-
st.error(f"Training
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
st.
|
| 422 |
else:
|
| 423 |
-
st.warning("Please upload data
|
| 424 |
|
| 425 |
# Predictions Section
|
| 426 |
-
elif section == "Predictions":
|
| 427 |
-
st.
|
| 428 |
|
| 429 |
-
# Check
|
| 430 |
if os.path.exists("models") and os.listdir("models"):
|
| 431 |
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
|
| 432 |
|
| 433 |
if available_models:
|
| 434 |
-
selected_model = st.selectbox("Choose trained model:", available_models)
|
| 435 |
-
|
| 436 |
# Single prediction
|
| 437 |
-
st.
|
| 438 |
-
|
|
|
|
| 439 |
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
| 447 |
-
if
|
| 448 |
-
st.
|
| 449 |
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
|
| 458 |
-
|
|
|
|
|
|
|
| 459 |
else:
|
| 460 |
-
st.
|
| 461 |
else:
|
| 462 |
-
st.
|
| 463 |
|
| 464 |
-
#
|
| 465 |
-
|
| 466 |
-
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
import numpy as np
|
| 5 |
+
from NoCodeTextClassifier.EDA import Informations, Visualizations
|
| 6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
| 7 |
+
from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
|
| 8 |
+
from NoCodeTextClassifier.models import Models
|
| 9 |
import os
|
| 10 |
import pickle
|
| 11 |
import io
|
|
|
|
|
|
|
| 12 |
import base64
|
| 13 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 14 |
+
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Configure page
|
| 17 |
+
st.set_page_config(page_title="Text Classifier", page_icon="📝", layout="wide")
|
| 18 |
+
|
| 19 |
+
# Utility functions
|
| 20 |
+
def safe_read_csv(uploaded_file, encoding_options=['utf-8', 'latin1', 'iso-8859-1', 'cp1252']):
|
| 21 |
+
"""Safely read CSV with multiple encoding attempts"""
|
| 22 |
+
if uploaded_file is None:
|
| 23 |
+
return None
|
| 24 |
|
| 25 |
+
# Reset file pointer
|
| 26 |
+
uploaded_file.seek(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
for encoding in encoding_options:
|
| 29 |
try:
|
| 30 |
+
# Read the file content as bytes
|
| 31 |
+
bytes_data = uploaded_file.read()
|
| 32 |
+
|
| 33 |
+
# Convert bytes to string with the current encoding
|
| 34 |
+
string_data = bytes_data.decode(encoding)
|
| 35 |
+
|
| 36 |
+
# Use StringIO to create a file-like object
|
| 37 |
+
df = pd.read_csv(io.StringIO(string_data))
|
| 38 |
+
st.success(f"File loaded successfully with {encoding} encoding")
|
| 39 |
+
return df
|
| 40 |
+
|
| 41 |
+
except (UnicodeDecodeError, pd.errors.EmptyDataError, pd.errors.ParserError) as e:
|
| 42 |
+
st.warning(f"Failed to read with {encoding} encoding: {str(e)}")
|
| 43 |
+
continue
|
| 44 |
except Exception as e:
|
| 45 |
+
st.error(f"Unexpected error with {encoding} encoding: {str(e)}")
|
| 46 |
+
continue
|
| 47 |
|
| 48 |
+
st.error("Failed to read the file with any supported encoding")
|
| 49 |
+
return None
|
| 50 |
+
|
| 51 |
+
def create_sample_data():
|
| 52 |
+
"""Create sample data for testing"""
|
| 53 |
+
sample_data = {
|
| 54 |
+
'text': [
|
| 55 |
+
"I love this product, it's amazing!",
|
| 56 |
+
"This is the worst thing I've ever bought",
|
| 57 |
+
"Great quality and fast delivery",
|
| 58 |
+
"Terrible customer service, very disappointed",
|
| 59 |
+
"Excellent value for money",
|
| 60 |
+
"Poor quality, broke after one day",
|
| 61 |
+
"Highly recommend this to everyone",
|
| 62 |
+
"Waste of money, don't buy this"
|
| 63 |
+
],
|
| 64 |
+
'sentiment': ['positive', 'negative', 'positive', 'negative', 'positive', 'negative', 'positive', 'negative']
|
| 65 |
+
}
|
| 66 |
+
return pd.DataFrame(sample_data)
|
| 67 |
|
|
|
|
| 68 |
def save_artifacts(obj, folder_name, file_name):
|
| 69 |
+
"""Save artifacts like encoders and vectorizers"""
|
|
|
|
| 70 |
try:
|
| 71 |
os.makedirs(folder_name, exist_ok=True)
|
| 72 |
+
with open(os.path.join(folder_name, file_name), 'wb') as f:
|
|
|
|
|
|
|
| 73 |
pickle.dump(obj, f)
|
|
|
|
|
|
|
| 74 |
return True
|
|
|
|
| 75 |
except Exception as e:
|
| 76 |
+
st.error(f"Error saving {file_name}: {str(e)}")
|
|
|
|
| 77 |
return False
|
| 78 |
|
| 79 |
def load_artifacts(folder_name, file_name):
|
| 80 |
+
"""Load saved artifacts"""
|
|
|
|
| 81 |
try:
|
| 82 |
+
with open(os.path.join(folder_name, file_name), 'rb') as f:
|
| 83 |
+
return pickle.load(f)
|
| 84 |
+
except FileNotFoundError:
|
| 85 |
+
st.error(f"File {file_name} not found in {folder_name} folder")
|
| 86 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
+
st.error(f"Error loading {file_name}: {str(e)}")
|
| 89 |
return None
|
| 90 |
|
| 91 |
def load_model(model_name):
|
| 92 |
+
"""Load trained model"""
|
| 93 |
+
try:
|
| 94 |
+
with open(os.path.join('models', model_name), 'rb') as f:
|
| 95 |
+
return pickle.load(f)
|
| 96 |
+
except FileNotFoundError:
|
| 97 |
+
st.error(f"Model {model_name} not found. Please train a model first.")
|
| 98 |
+
return None
|
| 99 |
+
except Exception as e:
|
| 100 |
+
st.error(f"Error loading model: {str(e)}")
|
| 101 |
+
return None
|
| 102 |
|
| 103 |
def predict_text(model_name, text, vectorizer_type="tfidf"):
|
| 104 |
+
"""Make prediction on new text"""
|
|
|
|
|
|
|
| 105 |
try:
|
| 106 |
+
# Load model
|
| 107 |
model = load_model(model_name)
|
| 108 |
if model is None:
|
| 109 |
return None, None
|
| 110 |
|
| 111 |
+
# Load vectorizer
|
| 112 |
vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
|
| 113 |
vectorizer = load_artifacts("artifacts", vectorizer_file)
|
| 114 |
if vectorizer is None:
|
| 115 |
return None, None
|
| 116 |
|
| 117 |
+
# Load label encoder
|
| 118 |
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 119 |
if encoder is None:
|
| 120 |
return None, None
|
| 121 |
|
| 122 |
+
# Clean and vectorize text
|
| 123 |
text_cleaner = TextCleaner()
|
| 124 |
clean_text = text_cleaner.clean_text(text)
|
| 125 |
|
| 126 |
+
# Transform text using the same vectorizer used during training
|
| 127 |
text_vector = vectorizer.transform([clean_text])
|
| 128 |
|
| 129 |
+
# Make prediction
|
| 130 |
prediction = model.predict(text_vector)
|
| 131 |
prediction_proba = None
|
| 132 |
|
| 133 |
+
# Get prediction probabilities if available
|
| 134 |
if hasattr(model, 'predict_proba'):
|
| 135 |
try:
|
| 136 |
prediction_proba = model.predict_proba(text_vector)[0]
|
| 137 |
except:
|
| 138 |
+
pass
|
| 139 |
|
| 140 |
+
# Decode prediction
|
| 141 |
predicted_label = encoder.inverse_transform(prediction)[0]
|
|
|
|
| 142 |
|
| 143 |
return predicted_label, prediction_proba
|
| 144 |
|
| 145 |
except Exception as e:
|
| 146 |
+
st.error(f"Error during prediction: {str(e)}")
|
|
|
|
| 147 |
return None, None
|
| 148 |
|
| 149 |
+
def download_sample_csv():
|
| 150 |
+
"""Generate sample CSV for download"""
|
| 151 |
+
sample_df = create_sample_data()
|
| 152 |
+
csv = sample_df.to_csv(index=False)
|
| 153 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
| 154 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="sample_data.csv">Download Sample CSV</a>'
|
| 155 |
+
return href
|
| 156 |
+
|
| 157 |
# Main App
|
| 158 |
+
st.title('📝 No Code Text Classification App')
|
| 159 |
+
st.markdown('---')
|
| 160 |
+
st.write('Understand the behavior of your text data and train a model to classify the text data')
|
| 161 |
+
|
| 162 |
+
# Initialize session state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if 'vectorizer_type' not in st.session_state:
|
| 164 |
st.session_state.vectorizer_type = "tfidf"
|
| 165 |
+
if 'train_df' not in st.session_state:
|
| 166 |
+
st.session_state.train_df = None
|
| 167 |
|
| 168 |
+
# Sidebar
|
| 169 |
+
st.sidebar.title("Navigation")
|
| 170 |
+
section = st.sidebar.radio("Choose Section", ["📊 Data Analysis", "🔧 Train Model", "🎯 Predictions"])
|
| 171 |
+
|
| 172 |
+
# Data Upload Section
|
| 173 |
+
st.sidebar.markdown("---")
|
| 174 |
+
st.sidebar.subheader("📁 Data Upload")
|
| 175 |
+
|
| 176 |
+
# Option to use sample data
|
| 177 |
+
if st.sidebar.button("Use Sample Data"):
|
| 178 |
+
st.session_state.train_df = create_sample_data()
|
| 179 |
+
st.sidebar.success("Sample data loaded!")
|
| 180 |
+
|
| 181 |
+
# Sample data download
|
| 182 |
+
st.sidebar.markdown("**Download Sample Data:**")
|
| 183 |
+
st.sidebar.markdown(download_sample_csv(), unsafe_allow_html=True)
|
| 184 |
+
|
| 185 |
+
st.sidebar.markdown("**Or upload your own data:**")
|
| 186 |
+
|
| 187 |
+
# File upload with better error handling
|
| 188 |
+
train_data = st.sidebar.file_uploader(
|
| 189 |
+
"Upload training data",
|
| 190 |
+
type=["csv"],
|
| 191 |
+
help="Upload a CSV file with text and target columns"
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
test_data = st.sidebar.file_uploader(
|
| 195 |
+
"Upload test data (optional)",
|
| 196 |
+
type=["csv"],
|
| 197 |
+
help="Optional: Upload separate test data"
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Alternative text input method
|
| 201 |
+
st.sidebar.markdown("**Or paste CSV data:**")
|
| 202 |
+
if st.sidebar.checkbox("Enter data manually"):
|
| 203 |
+
csv_text = st.sidebar.text_area(
|
| 204 |
+
"Paste CSV data here:",
|
| 205 |
+
height=100,
|
| 206 |
+
placeholder="text,sentiment\n\"Great product!\",positive\n\"Poor quality\",negative"
|
| 207 |
+
)
|
| 208 |
|
| 209 |
+
if csv_text and st.sidebar.button("Load from text"):
|
| 210 |
+
try:
|
| 211 |
+
train_df = pd.read_csv(io.StringIO(csv_text))
|
| 212 |
+
st.session_state.train_df = train_df
|
| 213 |
+
st.sidebar.success("Data loaded from text!")
|
| 214 |
+
except Exception as e:
|
| 215 |
+
st.sidebar.error(f"Error parsing CSV text: {str(e)}")
|
| 216 |
+
|
| 217 |
+
# Load data
|
| 218 |
+
train_df = None
|
| 219 |
+
test_df = None
|
| 220 |
+
|
| 221 |
+
# Try to load from uploaded file first
|
| 222 |
+
if train_data is not None:
|
| 223 |
+
train_df = safe_read_csv(train_data)
|
| 224 |
+
if train_df is not None:
|
| 225 |
+
st.session_state.train_df = train_df
|
| 226 |
+
|
| 227 |
+
# Use session state data if available
|
| 228 |
+
if st.session_state.train_df is not None:
|
| 229 |
+
train_df = st.session_state.train_df
|
| 230 |
+
|
| 231 |
+
if test_data is not None:
|
| 232 |
+
test_df = safe_read_csv(test_data)
|
| 233 |
+
|
| 234 |
+
# Process data if available
|
| 235 |
+
if train_df is not None:
|
| 236 |
+
try:
|
| 237 |
+
st.sidebar.success("✅ Training data loaded successfully!")
|
| 238 |
|
| 239 |
+
# Show data info in sidebar
|
| 240 |
+
st.sidebar.write(f"**Rows:** {len(train_df)}")
|
| 241 |
+
st.sidebar.write(f"**Columns:** {len(train_df.columns)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
with st.expander("📋 Data Preview", expanded=False):
|
| 244 |
+
st.write("**Training Data Preview:**")
|
| 245 |
+
st.dataframe(train_df.head())
|
| 246 |
|
| 247 |
+
columns = train_df.columns.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
# Column selection with validation
|
| 250 |
+
if len(columns) >= 2:
|
| 251 |
+
text_data = st.sidebar.selectbox("Choose the text column:", columns, index=0)
|
| 252 |
+
# Default to second column for target, or first if same as text
|
| 253 |
+
target_default = 1 if len(columns) > 1 and columns[1] != text_data else 0
|
| 254 |
+
target = st.sidebar.selectbox("Choose the target column:", columns, index=target_default)
|
| 255 |
|
| 256 |
+
if text_data == target:
|
| 257 |
+
st.sidebar.error("Text and target columns must be different!")
|
| 258 |
+
st.stop()
|
| 259 |
+
else:
|
| 260 |
+
st.sidebar.error("Data must have at least 2 columns (text and target)")
|
| 261 |
+
st.stop()
|
| 262 |
+
|
| 263 |
+
# Process data
|
| 264 |
+
try:
|
| 265 |
+
info = Informations(train_df, text_data, target)
|
| 266 |
+
train_df['clean_text'] = info.clean_text()
|
| 267 |
+
train_df['text_length'] = info.text_length()
|
| 268 |
|
| 269 |
+
# Handle label encoding
|
| 270 |
+
label_encoder = LabelEncoder()
|
| 271 |
+
train_df['target'] = label_encoder.fit_transform(train_df[target])
|
|
|
|
| 272 |
|
| 273 |
+
# Save label encoder
|
| 274 |
+
save_artifacts(label_encoder, "artifacts", "encoder.pkl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
+
except Exception as e:
|
| 277 |
+
st.error(f"Error processing data: {str(e)}")
|
| 278 |
+
st.stop()
|
| 279 |
+
|
| 280 |
+
except Exception as e:
|
| 281 |
+
st.error(f"Error loading data: {str(e)}")
|
| 282 |
+
train_df = None
|
| 283 |
+
|
| 284 |
+
# Main Content Based on Section
|
| 285 |
+
if section == "📊 Data Analysis":
|
| 286 |
+
if train_df is not None:
|
| 287 |
+
try:
|
| 288 |
+
st.header("📊 Data Analysis & Insights")
|
| 289 |
+
|
| 290 |
+
# Create columns for metrics
|
| 291 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 292 |
+
|
| 293 |
+
with col1:
|
| 294 |
+
st.metric("Total Samples", info.shape()[0])
|
| 295 |
+
with col2:
|
| 296 |
+
st.metric("Features", info.shape()[1])
|
| 297 |
+
with col3:
|
| 298 |
+
st.metric("Classes", len(train_df[target].unique()))
|
| 299 |
+
with col4:
|
| 300 |
+
missing_pct = (info.missing_values().sum() / len(train_df)) * 100
|
| 301 |
+
st.metric("Missing Data %", f"{missing_pct:.1f}%")
|
| 302 |
+
|
| 303 |
+
st.markdown("---")
|
| 304 |
+
|
| 305 |
+
# Class distribution
|
| 306 |
+
col1, col2 = st.columns(2)
|
| 307 |
+
|
| 308 |
+
with col1:
|
| 309 |
+
st.subheader("Class Distribution")
|
| 310 |
+
class_dist = train_df[target].value_counts()
|
| 311 |
+
st.bar_chart(class_dist)
|
| 312 |
|
| 313 |
+
# Check for imbalance
|
| 314 |
+
imbalance_ratio = class_dist.max() / class_dist.min()
|
| 315 |
+
if imbalance_ratio > 2:
|
| 316 |
+
st.warning(f"⚠️ Class imbalance detected (ratio: {imbalance_ratio:.1f}:1)")
|
| 317 |
+
else:
|
| 318 |
+
st.success("✅ Classes are relatively balanced")
|
| 319 |
+
|
| 320 |
+
with col2:
|
| 321 |
+
st.subheader("Text Length Distribution")
|
| 322 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 323 |
+
ax.hist(train_df['text_length'], bins=30, alpha=0.7, color='skyblue')
|
| 324 |
+
ax.set_xlabel('Text Length (characters)')
|
| 325 |
+
ax.set_ylabel('Frequency')
|
| 326 |
+
ax.set_title('Distribution of Text Lengths')
|
| 327 |
+
st.pyplot(fig)
|
| 328 |
+
|
| 329 |
+
# Detailed analysis
|
| 330 |
+
with st.expander("📈 Detailed Analysis", expanded=False):
|
| 331 |
+
st.write("**Class Imbalance Analysis:**")
|
| 332 |
+
st.write(info.class_imbalanced())
|
| 333 |
|
| 334 |
+
st.write("**Missing Values:**")
|
| 335 |
+
st.write(info.missing_values())
|
|
|
|
|
|
|
| 336 |
|
| 337 |
+
st.write("**Text Length Statistics:**")
|
|
|
|
| 338 |
st.write(info.analysis_text_length('text_length'))
|
| 339 |
|
| 340 |
+
# Correlation
|
| 341 |
+
correlation = train_df[['text_length', 'target']].corr().iloc[0, 1]
|
| 342 |
+
st.write(f"**Correlation between Text Length and Target:** {correlation:.4f}")
|
| 343 |
|
| 344 |
+
if abs(correlation) > 0.3:
|
| 345 |
+
st.info(f"📊 Moderate correlation detected ({correlation:.3f})")
|
| 346 |
+
elif abs(correlation) > 0.1:
|
| 347 |
+
st.info(f"📊 Weak correlation detected ({correlation:.3f})")
|
| 348 |
+
else:
|
| 349 |
+
st.info("📊 No significant correlation between text length and target")
|
| 350 |
+
|
| 351 |
+
except Exception as e:
|
| 352 |
+
st.error(f"Error in data analysis: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
else:
|
| 354 |
+
st.warning("📤 Please upload training data or use sample data to get insights")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
+
# Show instructions
|
| 357 |
+
st.info("""
|
| 358 |
+
**To get started:**
|
| 359 |
+
1. Click "Use Sample Data" in the sidebar, OR
|
| 360 |
+
2. Upload your own CSV file with text and target columns, OR
|
| 361 |
+
3. Use the manual text input option in the sidebar
|
| 362 |
+
""")
|
| 363 |
+
|
| 364 |
+
# Train Model Section
|
| 365 |
+
elif section == "🔧 Train Model":
|
| 366 |
+
if train_df is not None:
|
| 367 |
+
try:
|
| 368 |
+
st.header("🔧 Train Classification Model")
|
| 369 |
|
| 370 |
+
# Model and vectorizer selection
|
| 371 |
col1, col2 = st.columns(2)
|
| 372 |
+
|
| 373 |
with col1:
|
| 374 |
+
st.subheader("Choose Model")
|
| 375 |
+
model = st.selectbox("Select Algorithm:", [
|
| 376 |
+
"Logistic Regression", "Decision Tree",
|
| 377 |
+
"Random Forest", "Linear SVC", "SVC",
|
| 378 |
+
"Multinomial Naive Bayes", "Gaussian Naive Bayes"
|
| 379 |
+
], help="Different algorithms have different strengths")
|
| 380 |
|
| 381 |
with col2:
|
| 382 |
+
st.subheader("Choose Vectorizer")
|
| 383 |
+
vectorizer_choice = st.selectbox("Select Vectorization Method:",
|
| 384 |
+
["Tfidf Vectorizer", "Count Vectorizer"],
|
| 385 |
+
help="TF-IDF is usually better for text classification")
|
| 386 |
+
|
| 387 |
+
# Initialize vectorizer
|
| 388 |
+
if vectorizer_choice == "Tfidf Vectorizer":
|
| 389 |
+
vectorizer = TfidfVectorizer(max_features=10000, stop_words='english')
|
| 390 |
+
st.session_state.vectorizer_type = "tfidf"
|
| 391 |
+
else:
|
| 392 |
+
vectorizer = CountVectorizer(max_features=10000, stop_words='english')
|
| 393 |
+
st.session_state.vectorizer_type = "count"
|
| 394 |
+
|
| 395 |
+
# Show processed data preview
|
| 396 |
+
with st.expander("🔍 Processed Data Preview", expanded=False):
|
| 397 |
+
preview_df = train_df[['clean_text', 'target']].head(10)
|
| 398 |
+
st.dataframe(preview_df)
|
| 399 |
|
| 400 |
+
st.markdown("---")
|
| 401 |
+
|
| 402 |
+
# Training section
|
| 403 |
+
if st.button("🚀 Start Training", type="primary"):
|
| 404 |
+
with st.spinner("Training model... This may take a few moments."):
|
| 405 |
try:
|
| 406 |
+
# Progress bar
|
| 407 |
+
progress_bar = st.progress(0)
|
| 408 |
+
status_text = st.empty()
|
| 409 |
+
|
| 410 |
+
status_text.text("Vectorizing text data...")
|
| 411 |
+
progress_bar.progress(20)
|
|
|
|
| 412 |
|
| 413 |
+
# Vectorize text data
|
| 414 |
+
X = vectorizer.fit_transform(train_df['clean_text'])
|
| 415 |
+
y = train_df['target']
|
| 416 |
+
|
| 417 |
+
status_text.text("Splitting data...")
|
| 418 |
+
progress_bar.progress(40)
|
| 419 |
|
| 420 |
# Split data
|
| 421 |
X_train, X_test, y_train, y_test = process.split_data(X, y)
|
| 422 |
|
| 423 |
+
status_text.text("Saving vectorizer...")
|
| 424 |
+
progress_bar.progress(50)
|
| 425 |
+
|
| 426 |
+
# Save vectorizer
|
| 427 |
+
vectorizer_filename = f"{st.session_state.vectorizer_type}_vectorizer.pkl"
|
| 428 |
+
save_artifacts(vectorizer, "artifacts", vectorizer_filename)
|
| 429 |
+
|
| 430 |
+
status_text.text(f"Training {model}...")
|
| 431 |
+
progress_bar.progress(70)
|
| 432 |
|
| 433 |
# Train model
|
| 434 |
models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
|
| 435 |
|
| 436 |
+
if model == "Logistic Regression":
|
| 437 |
models.LogisticRegression()
|
| 438 |
+
elif model == "Decision Tree":
|
| 439 |
models.DecisionTree()
|
| 440 |
+
elif model == "Linear SVC":
|
|
|
|
|
|
|
| 441 |
models.LinearSVC()
|
| 442 |
+
elif model == "SVC":
|
| 443 |
models.SVC()
|
| 444 |
+
elif model == "Multinomial Naive Bayes":
|
| 445 |
models.MultinomialNB()
|
| 446 |
+
elif model == "Random Forest":
|
| 447 |
+
models.RandomForestClassifier()
|
| 448 |
+
elif model == "Gaussian Naive Bayes":
|
| 449 |
+
models.GaussianNB()
|
| 450 |
+
|
| 451 |
+
progress_bar.progress(100)
|
| 452 |
+
status_text.text("Training completed!")
|
| 453 |
|
| 454 |
+
st.success("🎉 Model training completed successfully!")
|
| 455 |
+
st.balloons()
|
| 456 |
+
|
| 457 |
+
# Show training info
|
| 458 |
+
st.info(f"""
|
| 459 |
+
**Training Summary:**
|
| 460 |
+
- Model: {model}
|
| 461 |
+
- Vectorizer: {vectorizer_choice}
|
| 462 |
+
- Training samples: {X_train.shape[0]}
|
| 463 |
+
- Test samples: {X_test.shape[0]}
|
| 464 |
+
- Features: {X_train.shape[1]}
|
| 465 |
+
""")
|
| 466 |
|
| 467 |
except Exception as e:
|
| 468 |
+
st.error(f"Training failed: {str(e)}")
|
| 469 |
+
|
| 470 |
+
except Exception as e:
|
| 471 |
+
st.error(f"Error in model training setup: {str(e)}")
|
| 472 |
else:
|
| 473 |
+
st.warning("📤 Please upload training data to train a model")
|
| 474 |
|
| 475 |
# Predictions Section
|
| 476 |
+
elif section == "🎯 Predictions":
|
| 477 |
+
st.header("🎯 Make Predictions")
|
| 478 |
|
| 479 |
+
# Check if models exist
|
| 480 |
if os.path.exists("models") and os.listdir("models"):
|
| 481 |
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
|
| 482 |
|
| 483 |
if available_models:
|
|
|
|
|
|
|
| 484 |
# Single prediction
|
| 485 |
+
st.subheader("Single Text Prediction")
|
| 486 |
+
|
| 487 |
+
col1, col2 = st.columns([3, 1])
|
| 488 |
|
| 489 |
+
with col1:
|
| 490 |
+
text_input = st.text_area(
|
| 491 |
+
"Enter text to classify:",
|
| 492 |
+
height=100,
|
| 493 |
+
placeholder="Type or paste your text here..."
|
| 494 |
)
|
| 495 |
+
|
| 496 |
+
with col2:
|
| 497 |
+
selected_model = st.selectbox("Choose model:", available_models)
|
| 498 |
+
predict_btn = st.button("🎯 Predict", type="primary")
|
| 499 |
+
|
| 500 |
+
if predict_btn and text_input.strip():
|
| 501 |
+
with st.spinner("Making prediction..."):
|
| 502 |
+
predicted_label, prediction_proba = predict_text(
|
| 503 |
+
selected_model,
|
| 504 |
+
text_input,
|
| 505 |
+
st.session_state.get('vectorizer_type', 'tfidf')
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
if predicted_label is not None:
|
| 509 |
+
st.success("Prediction completed!")
|
| 510 |
+
|
| 511 |
+
# Results in columns
|
| 512 |
+
col1, col2 = st.columns(2)
|
| 513 |
+
|
| 514 |
+
with col1:
|
| 515 |
+
st.markdown("### 📝 Input Text")
|
| 516 |
+
st.text_area("", value=text_input, height=100, disabled=True)
|
| 517 |
+
|
| 518 |
+
with col2:
|
| 519 |
+
st.markdown("### 🎯 Prediction Result")
|
| 520 |
+
st.markdown(f"**Predicted Class:** `{predicted_label}`")
|
| 521 |
+
|
| 522 |
+
# Show probabilities if available
|
| 523 |
+
if prediction_proba is not None:
|
| 524 |
+
encoder = load_artifacts("artifacts", "encoder.pkl")
|
| 525 |
+
if encoder is not None:
|
| 526 |
+
classes = encoder.classes_
|
| 527 |
+
prob_df = pd.DataFrame({
|
| 528 |
+
'Class': classes,
|
| 529 |
+
'Probability': prediction_proba
|
| 530 |
+
}).sort_values('Probability', ascending=False)
|
| 531 |
+
|
| 532 |
+
st.markdown("**Confidence Scores:**")
|
| 533 |
+
|
| 534 |
+
# Show as progress bars
|
| 535 |
+
for _, row in prob_df.iterrows():
|
| 536 |
+
st.write(f"{row['Class']}: {row['Probability']:.3f}")
|
| 537 |
+
st.progress(row['Probability'])
|
| 538 |
+
|
| 539 |
+
elif predict_btn and not text_input.strip():
|
| 540 |
+
st.warning("Please enter some text to classify")
|
| 541 |
+
|
| 542 |
+
st.markdown("---")
|
| 543 |
+
|
| 544 |
+
# Batch prediction
|
| 545 |
+
st.subheader("Batch Predictions")
|
| 546 |
+
|
| 547 |
+
uploaded_file = st.file_uploader(
|
| 548 |
+
"Upload CSV file for batch predictions",
|
| 549 |
+
type=['csv'],
|
| 550 |
+
help="Upload a CSV with a text column to classify multiple texts at once"
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
if uploaded_file is not None:
|
| 554 |
+
batch_df = safe_read_csv(uploaded_file)
|
| 555 |
|
| 556 |
+
if batch_df is not None:
|
| 557 |
+
col1, col2 = st.columns(2)
|
| 558 |
|
| 559 |
+
with col1:
|
| 560 |
+
text_column = st.selectbox("Select text column:", batch_df.columns.tolist())
|
| 561 |
+
with col2:
|
| 562 |
+
batch_model = st.selectbox("Choose model:", available_models, key="batch_model")
|
| 563 |
+
|
| 564 |
+
st.write("**Data Preview:**")
|
| 565 |
+
st.dataframe(batch_df.head())
|
| 566 |
+
|
| 567 |
+
if st.button("🚀 Run Batch Predictions"):
|
| 568 |
+
with st.spinner("Processing batch predictions..."):
|
| 569 |
+
predictions = []
|
| 570 |
+
|
| 571 |
+
# Progress tracking
|
| 572 |
+
progress_bar = st.progress(0)
|
| 573 |
+
total_texts = len(batch_df)
|
| 574 |
+
|
| 575 |
+
for i, text in enumerate(batch_df[text_column]):
|
| 576 |
+
pred, _ = predict_text(
|
| 577 |
+
batch_model,
|
| 578 |
+
str(text),
|
| 579 |
+
st.session_state.get('vectorizer_type', 'tfidf')
|
| 580 |
+
)
|
| 581 |
+
predictions.append(pred if pred is not None else "Error")
|
| 582 |
+
progress_bar.progress((i + 1) / total_texts)
|
| 583 |
+
|
| 584 |
+
batch_df['Predicted_Class'] = predictions
|
| 585 |
+
|
| 586 |
+
st.success("✅ Batch predictions completed!")
|
| 587 |
+
|
| 588 |
+
# Results
|
| 589 |
+
st.write("**Results:**")
|
| 590 |
+
st.dataframe(batch_df[[text_column, 'Predicted_Class']])
|
| 591 |
+
|
| 592 |
+
# Download button
|
| 593 |
+
csv = batch_df.to_csv(index=False)
|
| 594 |
+
st.download_button(
|
| 595 |
+
label="⬇️ Download Results",
|
| 596 |
+
data=csv,
|
| 597 |
+
file_name="batch_predictions.csv",
|
| 598 |
+
mime="text/csv"
|
| 599 |
+
)
|
| 600 |
|
| 601 |
+
# Show prediction distribution
|
| 602 |
+
pred_dist = batch_df['Predicted_Class'].value_counts()
|
| 603 |
+
st.bar_chart(pred_dist)
|
| 604 |
else:
|
| 605 |
+
st.warning("No trained models found.")
|
| 606 |
else:
|
| 607 |
+
st.warning("🔧 No models available. Please train a model first in the 'Train Model' section.")
|
| 608 |
|
| 609 |
+
# Footer
|
| 610 |
+
st.markdown("---")
|
| 611 |
+
st.markdown("*Built with Streamlit • No-Code Text Classification*")
|