Spaces:
Runtime error
Runtime error
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes:int=10, | |
seed:int=42, | |
is_TrivialAugmentWide = True, | |
freeze_layers=True): | |
"""Creates an EfficientNetB2 feature extractor model and transforms. | |
Args: | |
num_classes (int, optional): number of classes in the classifier head. Defaults to 10. | |
seed (int, optional): random seed value. Defaults to 42. | |
is_TrivialAugmentWide (boolean): Artificially increase the diversity of a training dataset | |
with data augmentation, default = True | |
Returns: | |
effnetb2_model (torch.nn.Module): EffNetB2 feature extractor model. | |
effnetb2_transforms (torchvision.transforms): EffNetB2 image transforms. | |
""" | |
# 1, 2, 3. Create EffNetB2 pretrained weights, transforms and model | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
effnetb2_transforms = weights.transforms() | |
if is_TrivialAugmentWide: | |
effnetb2_transforms = torchvision.transforms.Compose([ | |
torchvision.transforms.TrivialAugmentWide(), | |
effnetb2_transforms, | |
]) | |
effnetb2_model = torchvision.models.efficientnet_b2(weights=weights) | |
# 4. Freeze all layers in base model | |
if freeze_layers: | |
for param in effnetb2_model.parameters(): | |
param.requires_grad = False | |
# 5. Change classifier head with random seed for reproducibility | |
torch.manual_seed(seed) | |
effnetb2_model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes), | |
) | |
return effnetb2_model, effnetb2_transforms |