Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,661 +1,229 @@
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
-
import json
|
| 4 |
-
import gradio as gr
|
| 5 |
from PIL import Image, ImageDraw
|
| 6 |
import io
|
| 7 |
import base64
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
import tempfile
|
| 12 |
-
import
|
| 13 |
-
|
| 14 |
-
# --- Configuration ---
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
try:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
"tools": [{"type": "function", "function": {"name": "markdown_bbox"}}],
|
| 57 |
-
"max_tokens": 2048,
|
| 58 |
-
}
|
| 59 |
-
response = requests.post(NIM_API_URL, headers=HEADERS, json=payload, timeout=300)
|
| 60 |
-
response.raise_for_status()
|
| 61 |
-
return response.json()
|
| 62 |
-
except requests.exceptions.RequestException as e:
|
| 63 |
-
error_detail = str(e)
|
| 64 |
-
if e.response is not None:
|
| 65 |
-
try:
|
| 66 |
-
error_detail = e.response.json().get("detail", e.response.text)
|
| 67 |
-
except json.JSONDecodeError:
|
| 68 |
-
error_detail = e.response.text
|
| 69 |
-
raise gr.Error(f"API Error: {error_detail}")
|
| 70 |
-
|
| 71 |
-
def get_question_number(text: str) -> int:
|
| 72 |
-
match = re.match(r"^\d+", text.strip())
|
| 73 |
-
return int(match.group(0)) if match else -1
|
| 74 |
-
|
| 75 |
-
def process_and_crop(original_image: Image.Image, api_response: dict, split_page: bool):
|
| 76 |
-
# This function now returns both the gallery images and the full question data
|
| 77 |
try:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
left_starts = sorted([q for q in question_starts if q['bbox']['xmin'] < page_midpoint], key=lambda q: q['bbox']['ymin'])
|
| 92 |
-
right_starts = sorted([q for q in question_starts if q['bbox']['xmin'] >= page_midpoint], key=lambda q: q['bbox']['ymin'])
|
| 93 |
-
process_column(left_starts, all_elements, (0.0, page_midpoint), img_draw, original_image, all_cropped_questions)
|
| 94 |
-
process_column(right_starts, all_elements, (page_midpoint, 1.0), img_draw, original_image, all_cropped_questions)
|
| 95 |
-
else:
|
| 96 |
-
sorted_starts = sorted(question_starts, key=lambda q: q['bbox']['ymin'])
|
| 97 |
-
process_column(sorted_starts, all_elements, (0.0, 1.0), img_draw, original_image, all_cropped_questions)
|
| 98 |
-
all_cropped_questions.sort(key=lambda item: item[0])
|
| 99 |
-
final_gallery_images = [item[1] for item in all_cropped_questions]
|
| 100 |
-
return image_with_boxes, final_gallery_images, all_cropped_questions, len(all_cropped_questions)
|
| 101 |
-
|
| 102 |
-
def process_column(column_starts, all_elements, column_bounds, img_draw, original_image, cropped_questions_list):
|
| 103 |
-
# This function processes a column and filters out too small crops
|
| 104 |
-
img_width, img_height = original_image.size
|
| 105 |
-
MIN_CROP_WIDTH = 100 # Minimum width in pixels
|
| 106 |
-
MIN_CROP_HEIGHT = 50 # Minimum height in pixels
|
| 107 |
-
|
| 108 |
-
for i, start_element in enumerate(column_starts):
|
| 109 |
-
q_num = get_question_number(start_element['text'])
|
| 110 |
-
slice_ymin = start_element['bbox']['ymin']
|
| 111 |
-
if i + 1 < len(column_starts):
|
| 112 |
-
slice_ymax = column_starts[i+1]['bbox']['ymin']
|
| 113 |
-
else:
|
| 114 |
-
remaining_elements = [e for e in all_elements if e['bbox']['ymin'] >= slice_ymin and column_bounds[0] <= e['bbox']['xmin'] < column_bounds[1]]
|
| 115 |
-
slice_ymax = max(e['bbox']['ymax'] for e in remaining_elements) if remaining_elements else 1.0
|
| 116 |
-
elements_in_slice = [e for e in all_elements if (slice_ymin <= e['bbox']['ymin'] < slice_ymax and column_bounds[0] <= e['bbox']['xmin'] < column_bounds[1])]
|
| 117 |
-
if not elements_in_slice: continue
|
| 118 |
-
crop_xmin = min(e['bbox']['xmin'] for e in elements_in_slice)
|
| 119 |
-
crop_xmax = max(e['bbox']['xmax'] for e in elements_in_slice)
|
| 120 |
-
abs_box = (crop_xmin * img_width, slice_ymin * img_height, crop_xmax * img_width, slice_ymax * img_height)
|
| 121 |
-
|
| 122 |
-
# Check if crop is too small
|
| 123 |
-
crop_width = abs_box[2] - abs_box[0]
|
| 124 |
-
crop_height = abs_box[3] - abs_box[1]
|
| 125 |
-
if crop_width < MIN_CROP_WIDTH or crop_height < MIN_CROP_HEIGHT:
|
| 126 |
-
print(f"Skipping too small crop for question {q_num}: {crop_width}x{crop_height}")
|
| 127 |
-
continue
|
| 128 |
-
|
| 129 |
-
img_draw.rectangle(abs_box, outline="red", width=3)
|
| 130 |
-
cropped_img = original_image.crop(abs_box)
|
| 131 |
-
|
| 132 |
-
# Generate descriptive filename from question text
|
| 133 |
-
question_text = start_element.get('text', '').strip()
|
| 134 |
-
# Clean text for filename (remove special characters, limit length)
|
| 135 |
-
clean_text = re.sub(r'[^\w\s-]', '', question_text)[:50]
|
| 136 |
-
clean_text = re.sub(r'\s+', '_', clean_text)
|
| 137 |
-
filename = f"{q_num}-{clean_text}" if clean_text else f"{q_num}-question"
|
| 138 |
-
|
| 139 |
-
cropped_questions_list.append((q_num, cropped_img, filename))
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def parse_page_ranges(range_str: str) -> set:
|
| 143 |
-
"""Parses a string like '1,3,5-10' into a set of page numbers (1-based)."""
|
| 144 |
-
# ... (function remains the same)
|
| 145 |
-
if not range_str: return set()
|
| 146 |
-
pages = set()
|
| 147 |
-
parts = range_str.split(',')
|
| 148 |
-
for part in parts:
|
| 149 |
-
part = part.strip()
|
| 150 |
-
if not part: continue
|
| 151 |
-
try:
|
| 152 |
-
if '-' in part:
|
| 153 |
-
start, end = map(int, part.split('-'))
|
| 154 |
-
if start > end: continue
|
| 155 |
-
pages.update(range(start, end + 1))
|
| 156 |
-
else:
|
| 157 |
-
pages.add(int(part))
|
| 158 |
-
except ValueError:
|
| 159 |
-
continue
|
| 160 |
-
return pages
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
# --- 4. NEW DOWNLOADER FUNCTION ---
|
| 164 |
-
|
| 165 |
-
def upload_to_report_app(selected_indices_str: str, session_id: str):
|
| 166 |
"""
|
| 167 |
-
|
|
|
|
| 168 |
"""
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
if session_id not in CROPPED_QUESTIONS_STORE:
|
| 174 |
-
print(f"❌ Session {session_id} not found in CROPPED_QUESTIONS_STORE")
|
| 175 |
-
print(f"📋 Available sessions: {list(CROPPED_QUESTIONS_STORE.keys())}")
|
| 176 |
-
raise gr.Error("No processed questions found. Please run the extraction first.")
|
| 177 |
-
|
| 178 |
-
cropped_questions = CROPPED_QUESTIONS_STORE[session_id]
|
| 179 |
-
print(f"📊 Found {len(cropped_questions)} questions in session")
|
| 180 |
-
|
| 181 |
-
if not cropped_questions:
|
| 182 |
-
print("❌ No questions found in session")
|
| 183 |
-
raise gr.Error("No questions were extracted from the processed files.")
|
| 184 |
-
|
| 185 |
-
# If no selection specified, upload all questions
|
| 186 |
-
if not selected_indices_str.strip():
|
| 187 |
-
selected_indices = set(item[0] for item in cropped_questions)
|
| 188 |
-
print(f"📌 No selection specified, using all questions: {selected_indices}")
|
| 189 |
-
else:
|
| 190 |
-
selected_indices = parse_page_ranges(selected_indices_str)
|
| 191 |
-
print(f"📌 Parsed selection: {selected_indices}")
|
| 192 |
-
if not selected_indices:
|
| 193 |
-
print("❌ No valid indices parsed")
|
| 194 |
-
raise gr.Error("Please enter valid question numbers/ranges.")
|
| 195 |
-
|
| 196 |
try:
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
for i, question_data in enumerate(cropped_questions):
|
| 203 |
-
print(f"🔍 Processing question {i+1}/{len(cropped_questions)}: {question_data[0]} (type: {type(question_data)})")
|
| 204 |
-
|
| 205 |
-
if len(question_data) >= 3:
|
| 206 |
-
q_num, img, filename = question_data[0], question_data[1], question_data[2]
|
| 207 |
-
print(f" ✅ Question {q_num}, filename: {filename}")
|
| 208 |
-
|
| 209 |
-
if q_num in selected_indices:
|
| 210 |
-
print(f" 🎯 Question {q_num} is selected for upload")
|
| 211 |
-
|
| 212 |
-
# Convert PIL image to bytes
|
| 213 |
-
img_io = io.BytesIO()
|
| 214 |
-
print(f" 🖼️ Converting image to bytes (size: {img.size})")
|
| 215 |
-
img.save(img_io, format='PNG')
|
| 216 |
-
img_bytes = img_io.getvalue()
|
| 217 |
-
print(f" 💾 Image converted to {len(img_bytes)} bytes")
|
| 218 |
-
|
| 219 |
-
# Create file tuple for requests
|
| 220 |
-
file_tuple = ('images', (f"{filename}.png", img_bytes, 'image/png'))
|
| 221 |
-
files.append(file_tuple)
|
| 222 |
-
selected_questions.append({'q_num': q_num, 'filename': filename})
|
| 223 |
-
print(f" ✅ Added to upload list")
|
| 224 |
-
else:
|
| 225 |
-
print(f" ⏭️ Question {q_num} not in selection, skipping")
|
| 226 |
-
else:
|
| 227 |
-
print(f" ❌ Invalid question data format: {len(question_data)} items")
|
| 228 |
-
|
| 229 |
-
print(f"📦 Prepared {len(files)} files for upload")
|
| 230 |
-
print(f"📋 Selected questions: {[q['q_num'] for q in selected_questions]}")
|
| 231 |
-
|
| 232 |
-
if not files:
|
| 233 |
-
print("❌ No files prepared for upload")
|
| 234 |
-
raise gr.Error("No matching questions found to upload.")
|
| 235 |
-
|
| 236 |
-
# Upload to Flask app
|
| 237 |
-
flask_url = 'http://localhost:1302/upload'
|
| 238 |
-
print(f"🌐 Making POST request to: {flask_url}")
|
| 239 |
-
print(f"📤 Uploading {len(files)} files...")
|
| 240 |
-
|
| 241 |
-
response = requests.post(
|
| 242 |
-
flask_url,
|
| 243 |
-
files=files,
|
| 244 |
-
timeout=30
|
| 245 |
-
)
|
| 246 |
-
|
| 247 |
-
print(f"📡 Response status: {response.status_code}")
|
| 248 |
-
print(f"📡 Response headers: {dict(response.headers)}")
|
| 249 |
-
print(f"📡 Response text: {response.text[:500]}...") # First 500 chars
|
| 250 |
-
|
| 251 |
-
if response.status_code == 200:
|
| 252 |
-
print("✅ Upload successful!")
|
| 253 |
-
try:
|
| 254 |
-
result = response.json()
|
| 255 |
-
print(f"📋 Response JSON: {result}")
|
| 256 |
-
|
| 257 |
-
flask_session_id = result.get('session_id')
|
| 258 |
-
print(f"🔑 Flask session ID: {flask_session_id}")
|
| 259 |
-
|
| 260 |
-
if flask_session_id:
|
| 261 |
-
# Return the URL to redirect to question entry page
|
| 262 |
-
redirect_url = f"http://localhost:1302/question_entry/{flask_session_id}"
|
| 263 |
-
print(f"🎯 Generated redirect URL: {redirect_url}")
|
| 264 |
-
return redirect_url
|
| 265 |
-
else:
|
| 266 |
-
print("❌ No session_id in Flask response")
|
| 267 |
-
raise gr.Error("Failed to get session ID from Report App.")
|
| 268 |
-
except json.JSONDecodeError as e:
|
| 269 |
-
print(f"❌ JSON decode error: {e}")
|
| 270 |
-
print(f"📄 Raw response: {response.text}")
|
| 271 |
-
raise gr.Error("Invalid JSON response from Report App.")
|
| 272 |
else:
|
| 273 |
-
|
| 274 |
-
print(f"📄 Error response: {response.text}")
|
| 275 |
-
raise gr.Error(f"Upload failed: {response.status_code} - {response.text}")
|
| 276 |
-
|
| 277 |
-
except requests.exceptions.ConnectionError as e:
|
| 278 |
-
print(f"❌ Connection error: {e}")
|
| 279 |
-
raise gr.Error("Could not connect to Report App. Make sure it's running on port 1302.")
|
| 280 |
-
except requests.exceptions.Timeout as e:
|
| 281 |
-
print(f"❌ Timeout error: {e}")
|
| 282 |
-
raise gr.Error("Upload timed out. Please try again.")
|
| 283 |
except Exception as e:
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
"""
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
If empty, downloads all questions.
|
| 295 |
"""
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
raise gr.Error("No processed questions found. Please run the extraction first.")
|
| 299 |
-
|
| 300 |
-
cropped_questions = CROPPED_QUESTIONS_STORE[session_id]
|
| 301 |
-
|
| 302 |
-
if not cropped_questions:
|
| 303 |
-
raise gr.Error("No questions were extracted from the processed files.")
|
| 304 |
-
|
| 305 |
-
# If no selection specified, download all questions
|
| 306 |
-
if not selected_indices_str.strip():
|
| 307 |
-
selected_indices = set(item[0] for item in cropped_questions)
|
| 308 |
-
else:
|
| 309 |
-
selected_indices = parse_page_ranges(selected_indices_str)
|
| 310 |
-
if not selected_indices:
|
| 311 |
-
raise gr.Error("Please enter valid question numbers/ranges to download.")
|
| 312 |
-
|
| 313 |
-
# Create temporary zip file
|
| 314 |
-
zip_path = os.path.join(tempfile.gettempdir(), f"questions_{session_id}.zip")
|
| 315 |
-
|
| 316 |
-
with zipfile.ZipFile(zip_path, 'w') as zf:
|
| 317 |
-
for question_data in cropped_questions:
|
| 318 |
-
q_num, img, filename = question_data
|
| 319 |
-
|
| 320 |
-
if q_num in selected_indices:
|
| 321 |
-
# Save image to bytes buffer
|
| 322 |
-
img_io = io.BytesIO()
|
| 323 |
-
img.save(img_io, format='PNG')
|
| 324 |
-
img_io.seek(0)
|
| 325 |
-
|
| 326 |
-
# Add to zip file with descriptive name
|
| 327 |
-
zf.writestr(f"{filename}.png", img_io.read())
|
| 328 |
|
| 329 |
-
|
|
|
|
|
|
|
| 330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
If empty, downloads all pages.
|
| 337 |
-
"""
|
| 338 |
-
|
| 339 |
-
if session_id not in PROCESSED_PAGES_STORE:
|
| 340 |
-
raise gr.Error("No processed results found. Please run the extraction first.")
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
if not processed_pages:
|
| 345 |
-
raise gr.Error("No pages were processed.")
|
| 346 |
-
|
| 347 |
-
# If no selection specified, download all pages
|
| 348 |
-
if not selected_indices_str.strip():
|
| 349 |
-
selected_indices = set(range(1, len(processed_pages) + 1)) # 1-based indexing
|
| 350 |
-
else:
|
| 351 |
-
selected_indices = parse_page_ranges(selected_indices_str)
|
| 352 |
-
if not selected_indices:
|
| 353 |
-
raise gr.Error("Please enter valid page numbers/ranges to download.")
|
| 354 |
-
|
| 355 |
-
# Create temporary zip file
|
| 356 |
-
zip_path = os.path.join(tempfile.gettempdir(), f"processed_pages_{session_id}.zip")
|
| 357 |
-
|
| 358 |
-
with zipfile.ZipFile(zip_path, 'w') as zf:
|
| 359 |
-
for user_page_num in selected_indices:
|
| 360 |
-
# Convert 1-based user input to 0-based list index
|
| 361 |
-
list_index = user_page_num - 1
|
| 362 |
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
return zip_path
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
# --- 5. Main Gradio Function (Updated Inputs) ---
|
| 380 |
-
|
| 381 |
-
def question_extractor_app(pdf_file, image_file, split_page_toggle, page_selection_str):
|
| 382 |
-
|
| 383 |
-
# Determine the file source
|
| 384 |
-
if pdf_file and image_file:
|
| 385 |
-
raise gr.Error("Please upload either a PDF or an Image, not both.")
|
| 386 |
-
elif pdf_file:
|
| 387 |
-
input_filepath = pdf_file.name
|
| 388 |
-
elif image_file:
|
| 389 |
-
input_filepath = image_file.name
|
| 390 |
-
else:
|
| 391 |
-
raise gr.Error("Please upload a file.")
|
| 392 |
-
|
| 393 |
-
if not NVIDIA_API_KEY:
|
| 394 |
-
raise gr.Error("NVIDIA_API_KEY is not set. Please configure your environment variables.")
|
| 395 |
-
|
| 396 |
-
# --- File Loading ---
|
| 397 |
-
page_images_to_process = []
|
| 398 |
-
|
| 399 |
-
if input_filepath.lower().endswith('.pdf'):
|
| 400 |
-
selected_pages = parse_page_ranges(page_selection_str)
|
| 401 |
-
doc = fitz.open(input_filepath)
|
| 402 |
-
for page_num in range(len(doc)):
|
| 403 |
-
if not selected_pages or (page_num + 1) in selected_pages:
|
| 404 |
-
page = doc.load_page(page_num)
|
| 405 |
-
pix = page.get_pixmap(dpi=300)
|
| 406 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 407 |
-
page_images_to_process.append(img)
|
| 408 |
-
doc.close()
|
| 409 |
-
else:
|
| 410 |
-
# Note: Page selection is ignored for single image files
|
| 411 |
-
page_images_to_process.append(Image.open(input_filepath))
|
| 412 |
-
|
| 413 |
-
if not page_images_to_process:
|
| 414 |
-
return [], [], "", "", "No pages were selected or the file is empty.", "No questions found."
|
| 415 |
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
all_question_data = [] # Store the full question data with metadata
|
| 420 |
-
total_questions_found = 0
|
| 421 |
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
with io.BytesIO() as img_byte_arr:
|
| 425 |
-
processed_image.save(img_byte_arr, format='PNG')
|
| 426 |
-
image_bytes = img_byte_arr.getvalue()
|
| 427 |
|
| 428 |
-
|
| 429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
summary = f"Processed {len(page_images_to_process)} page(s) and found a total of {total_questions_found} questions."
|
| 437 |
-
|
| 438 |
-
# Store processed data and generate unique session ID for download
|
| 439 |
-
session_id = str(time.time()).replace('.', '')
|
| 440 |
-
PROCESSED_PAGES_STORE[session_id] = all_processed_pages
|
| 441 |
-
CROPPED_QUESTIONS_STORE[session_id] = all_question_data
|
| 442 |
|
| 443 |
-
# Generate strings for download info
|
| 444 |
-
available_pages_str = ", ".join(str(i+1) for i in range(len(all_processed_pages)))
|
| 445 |
-
available_questions_str = ", ".join(str(item[0]) for item in all_question_data)
|
| 446 |
-
|
| 447 |
-
return (all_processed_pages, all_gallery_images, summary, session_id,
|
| 448 |
-
f"Available pages: {available_pages_str}", f"Available questions: {available_questions_str}")
|
| 449 |
|
| 450 |
-
# ---
|
| 451 |
if __name__ == "__main__":
|
| 452 |
-
|
| 453 |
-
with gr.Blocks(title="NIM Question Extractor", theme=gr.themes.Soft()) as demo:
|
| 454 |
gr.Markdown(
|
| 455 |
"""
|
| 456 |
-
#
|
| 457 |
-
|
|
|
|
|
|
|
| 458 |
"""
|
| 459 |
)
|
| 460 |
-
|
| 461 |
-
# Input Section
|
| 462 |
-
with gr.Group():
|
| 463 |
-
gr.Markdown("## 📁 Input Files")
|
| 464 |
-
with gr.Row():
|
| 465 |
-
pdf_input = gr.File(
|
| 466 |
-
label="Upload PDF File",
|
| 467 |
-
file_types=['.pdf'],
|
| 468 |
-
scale=1
|
| 469 |
-
)
|
| 470 |
-
image_input = gr.File(
|
| 471 |
-
label="Upload Image File",
|
| 472 |
-
file_types=['.png', '.jpg', '.jpeg'],
|
| 473 |
-
scale=1
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
# Processing Options Section
|
| 477 |
-
with gr.Group():
|
| 478 |
-
gr.Markdown("## ⚙️ Processing Options")
|
| 479 |
-
with gr.Row():
|
| 480 |
-
with gr.Column(scale=2):
|
| 481 |
-
page_select_input = gr.Textbox(
|
| 482 |
-
label="Select Pages (PDF only)",
|
| 483 |
-
placeholder="e.g., 1, 3, 5-10 (leave blank for all pages)",
|
| 484 |
-
info="Enter page numbers or ranges separated by commas"
|
| 485 |
-
)
|
| 486 |
-
with gr.Column(scale=1):
|
| 487 |
-
split_toggle = gr.Checkbox(
|
| 488 |
-
label="Two-Column Layout",
|
| 489 |
-
info="Check if document has two columns"
|
| 490 |
-
)
|
| 491 |
-
|
| 492 |
-
# Action Button
|
| 493 |
with gr.Row():
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
variant="primary"
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
gr.Markdown("## 📊 Results")
|
| 506 |
-
|
| 507 |
-
# Summary
|
| 508 |
-
output_summary = gr.Textbox(
|
| 509 |
-
label="Processing Summary",
|
| 510 |
-
interactive=False,
|
| 511 |
-
show_copy_button=True
|
| 512 |
-
)
|
| 513 |
-
|
| 514 |
-
# Download Sections
|
| 515 |
-
with gr.Row():
|
| 516 |
-
# Pages Download
|
| 517 |
-
with gr.Column(scale=1):
|
| 518 |
-
gr.Markdown("### 📄 Download Pages (with boxes)")
|
| 519 |
-
download_pages_info = gr.Textbox(
|
| 520 |
-
label="Available Pages",
|
| 521 |
-
interactive=False,
|
| 522 |
-
placeholder="Process files first"
|
| 523 |
-
)
|
| 524 |
-
download_pages_input = gr.Textbox(
|
| 525 |
-
label="Select Pages",
|
| 526 |
-
placeholder="e.g., 1-3, 5 (leave blank for all)",
|
| 527 |
-
info="Pages with red boxes"
|
| 528 |
-
)
|
| 529 |
-
download_pages_btn = gr.DownloadButton(
|
| 530 |
-
"📥 Download Pages ZIP",
|
| 531 |
-
interactive=False,
|
| 532 |
-
variant="secondary"
|
| 533 |
-
)
|
| 534 |
-
|
| 535 |
-
# Questions Download
|
| 536 |
-
with gr.Column(scale=1):
|
| 537 |
-
gr.Markdown("### 🔍 Download Questions")
|
| 538 |
-
download_questions_info = gr.Textbox(
|
| 539 |
-
label="Available Questions",
|
| 540 |
-
interactive=False,
|
| 541 |
-
placeholder="Process files first"
|
| 542 |
-
)
|
| 543 |
-
download_questions_input = gr.Textbox(
|
| 544 |
-
label="Select Questions",
|
| 545 |
-
placeholder="e.g., 1-5, 8, 10-12 (leave blank for all)",
|
| 546 |
-
info="Individual question images"
|
| 547 |
-
)
|
| 548 |
-
download_questions_btn = gr.DownloadButton(
|
| 549 |
-
"📥 Download Questions ZIP",
|
| 550 |
-
interactive=False,
|
| 551 |
-
variant="primary"
|
| 552 |
-
)
|
| 553 |
-
|
| 554 |
-
# Report App Integration
|
| 555 |
-
with gr.Column(scale=1):
|
| 556 |
-
gr.Markdown("### 📝 Report App")
|
| 557 |
-
report_app_input = gr.Textbox(
|
| 558 |
-
label="Select Questions for Report",
|
| 559 |
-
placeholder="e.g., 1-5, 8 (leave blank for all)",
|
| 560 |
-
info="Upload to Report App for analysis"
|
| 561 |
-
)
|
| 562 |
-
report_app_output = gr.Textbox(
|
| 563 |
-
label="Report App URL",
|
| 564 |
-
interactive=False,
|
| 565 |
-
placeholder="Upload questions to get redirect URL",
|
| 566 |
-
show_copy_button=True
|
| 567 |
-
)
|
| 568 |
-
with gr.Row():
|
| 569 |
-
report_upload_btn = gr.Button(
|
| 570 |
-
"🚀 Upload to Report App",
|
| 571 |
-
interactive=False,
|
| 572 |
-
variant="primary"
|
| 573 |
-
)
|
| 574 |
-
report_open_btn = gr.Button(
|
| 575 |
-
"🔗 Open Report App",
|
| 576 |
-
interactive=False,
|
| 577 |
-
link="",
|
| 578 |
-
variant="secondary"
|
| 579 |
-
)
|
| 580 |
-
|
| 581 |
-
# Image Galleries
|
| 582 |
-
with gr.Group():
|
| 583 |
-
gr.Markdown("## 🖼️ Visual Results")
|
| 584 |
-
|
| 585 |
-
with gr.Tab("Processed Pages (with boxes)"):
|
| 586 |
-
output_processed_pages = gr.Gallery(
|
| 587 |
-
label="Pages with Question Boundaries",
|
| 588 |
-
height=400,
|
| 589 |
-
columns=2,
|
| 590 |
-
object_fit="contain",
|
| 591 |
-
show_label=False
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
with gr.Tab("Individual Questions"):
|
| 595 |
-
output_cropped_gallery = gr.Gallery(
|
| 596 |
-
label="Cropped Questions (sorted by number)",
|
| 597 |
-
height=400,
|
| 598 |
-
columns=4,
|
| 599 |
-
object_fit="contain",
|
| 600 |
-
show_label=False
|
| 601 |
-
)
|
| 602 |
-
|
| 603 |
-
# --- Event Handlers ---
|
| 604 |
-
|
| 605 |
-
# Main processing handler
|
| 606 |
-
submit_btn.click(
|
| 607 |
-
fn=question_extractor_app,
|
| 608 |
-
inputs=[pdf_input, image_input, split_toggle, page_select_input],
|
| 609 |
-
outputs=[output_processed_pages, output_cropped_gallery, output_summary,
|
| 610 |
-
session_id_output, download_pages_info, download_questions_info]
|
| 611 |
-
).then(
|
| 612 |
-
# Re-enable download buttons after results are ready
|
| 613 |
-
lambda: (gr.DownloadButton(interactive=True), gr.DownloadButton(interactive=True), gr.Button(interactive=True)),
|
| 614 |
-
outputs=[download_pages_btn, download_questions_btn, report_upload_btn]
|
| 615 |
-
)
|
| 616 |
-
|
| 617 |
-
# Download handlers
|
| 618 |
-
download_pages_btn.click(
|
| 619 |
-
fn=zip_selected_pages,
|
| 620 |
-
inputs=[download_pages_input, session_id_output],
|
| 621 |
-
outputs=[download_pages_btn],
|
| 622 |
-
api_name=False
|
| 623 |
-
)
|
| 624 |
-
|
| 625 |
-
download_questions_btn.click(
|
| 626 |
-
fn=zip_selected_questions,
|
| 627 |
-
inputs=[download_questions_input, session_id_output],
|
| 628 |
-
outputs=[download_questions_btn],
|
| 629 |
-
api_name=False
|
| 630 |
-
)
|
| 631 |
-
|
| 632 |
-
# Report App handlers
|
| 633 |
-
def handle_report_upload(questions_input, session_id):
|
| 634 |
-
try:
|
| 635 |
-
url = upload_to_report_app(questions_input, session_id)
|
| 636 |
-
return url, gr.Button(interactive=True, link=url)
|
| 637 |
-
except Exception as e:
|
| 638 |
-
return f"Error: {str(e)}", gr.Button(interactive=False)
|
| 639 |
-
|
| 640 |
-
report_upload_btn.click(
|
| 641 |
-
fn=handle_report_upload,
|
| 642 |
-
inputs=[report_app_input, session_id_output],
|
| 643 |
-
outputs=[report_app_output, report_open_btn]
|
| 644 |
)
|
| 645 |
|
| 646 |
-
|
| 647 |
-
gr.Markdown(
|
| 648 |
-
"""
|
| 649 |
-
---
|
| 650 |
-
💡 **Tips:**
|
| 651 |
-
- Upload either a PDF or image file, not both
|
| 652 |
-
- Use page selection to process specific pages from PDFs
|
| 653 |
-
- Enable two-column layout for documents with side-by-side content
|
| 654 |
-
- **Pages ZIP**: Contains full pages with red boxes showing question boundaries
|
| 655 |
-
- **Questions ZIP**: Contains individual cropped question images with descriptive names
|
| 656 |
-
- **Report App**: Upload questions to the analysis app on port 1302 for detailed reporting
|
| 657 |
-
- **Leave download/upload fields blank to process ALL pages/questions**
|
| 658 |
-
"""
|
| 659 |
-
)
|
| 660 |
|
| 661 |
demo.launch(debug=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
|
|
|
|
|
|
| 3 |
from PIL import Image, ImageDraw
|
| 4 |
import io
|
| 5 |
import base64
|
| 6 |
+
import json
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import fitz # PyMuPDF
|
| 9 |
import tempfile
|
| 10 |
+
from typing import Union
|
| 11 |
+
|
| 12 |
+
# --- Configuration & API Constants ---
|
| 13 |
+
INVOKE_URL_OCR = "https://ai.api.nvidia.com/v1/cv/nvidia/nemoretriever-ocr-v1"
|
| 14 |
+
INVOKE_URL_PARSER = "https://integrate.api.nvidia.com/v1/chat/completions"
|
| 15 |
+
MAX_PIXELS_FOR_PARSER = 1024 * 1024 # 1 Megapixel
|
| 16 |
+
|
| 17 |
+
# =================================================================================
|
| 18 |
+
# SELF-CONTAINED REDACTION LOGIC
|
| 19 |
+
# (This is the refined function from the previous step)
|
| 20 |
+
# =================================================================================
|
| 21 |
+
|
| 22 |
+
def _get_average_color_from_regions(image: Image.Image, regions: list[tuple]):
|
| 23 |
+
"""Calculates the average RGB color from a list of regions in an image."""
|
| 24 |
+
total_r, total_g, total_b = 0, 0, 0; pixel_count = 0
|
| 25 |
+
img_width, img_height = image.size
|
| 26 |
+
if image.mode == 'RGBA': image = image.convert('RGB')
|
| 27 |
+
pixels = image.load()
|
| 28 |
+
for region in regions:
|
| 29 |
+
x1, y1, x2, y2 = [max(0, int(c)) for c in region]
|
| 30 |
+
x2 = min(img_width, x2); y2 = min(img_height, y2)
|
| 31 |
+
for x in range(x1, x2):
|
| 32 |
+
for y in range(y1, y2):
|
| 33 |
+
r, g, b = pixels[x, y]
|
| 34 |
+
total_r += r; total_g += g; total_b += b
|
| 35 |
+
pixel_count += 1
|
| 36 |
+
if pixel_count == 0: return (0, 0, 0)
|
| 37 |
+
return (total_r // pixel_count, total_g // pixel_count, total_b // pixel_count)
|
| 38 |
+
|
| 39 |
+
def _detect_pictures_with_parser(image_to_process: Image.Image, api_key: str):
|
| 40 |
+
"""Sends an image to the NemoRetriever Parser model to detect 'Picture' elements."""
|
| 41 |
+
headers = {"Authorization": f"Bearer {api_key}", "Accept": "application/json"}
|
| 42 |
+
buffered = io.BytesIO()
|
| 43 |
+
image_to_process.save(buffered, format="PNG")
|
| 44 |
+
b64_str = base64.b64encode(buffered.getvalue()).decode("ascii")
|
| 45 |
+
content = f'<img src="data:image/png;base64,{b64_str}" />'
|
| 46 |
+
tool_name = "markdown_bbox"
|
| 47 |
+
payload = {
|
| 48 |
+
"model": "nvidia/nemoretriever-parse", "messages": [{"role": "user", "content": content}],
|
| 49 |
+
"tools": [{"type": "function", "function": {"name": tool_name}}],
|
| 50 |
+
"tool_choice": {"type": "function", "function": {"name": tool_name}}, "max_tokens": 2048,
|
| 51 |
+
}
|
| 52 |
+
response = requests.post(INVOKE_URL_PARSER, headers=headers, json=payload, timeout=120)
|
| 53 |
+
response.raise_for_status()
|
| 54 |
+
response_json = response.json()
|
| 55 |
+
picture_bboxes = []
|
| 56 |
+
tool_calls = response_json.get('choices', [{}])[0].get('message', {}).get('tool_calls', [])
|
| 57 |
+
if tool_calls:
|
| 58 |
+
arguments_str = tool_calls[0].get('function', {}).get('arguments', '[]')
|
| 59 |
+
parsed_arguments = json.loads(arguments_str)
|
| 60 |
+
if parsed_arguments and isinstance(parsed_arguments, list):
|
| 61 |
+
for element in parsed_arguments[0]:
|
| 62 |
+
if element.get("type") == "Picture" and element.get("bbox"):
|
| 63 |
+
picture_bboxes.append(element["bbox"])
|
| 64 |
+
return picture_bboxes
|
| 65 |
+
|
| 66 |
+
def _redact_text_in_image(input_image: Image.Image, api_key: str):
|
| 67 |
+
"""Sends a (cropped) image to the OCR model and returns a redacted version."""
|
| 68 |
+
headers = {"Authorization": f"Bearer {api_key}", "Accept": "application/json"}
|
| 69 |
+
buffered = io.BytesIO(); input_image.save(buffered, format="PNG")
|
| 70 |
+
image_b64 = base64.b64encode(buffered.getvalue()).decode()
|
| 71 |
+
payload = {"input": [{"type": "image_url", "url": f"data:image/png;base64,{image_b64}"}]}
|
| 72 |
try:
|
| 73 |
+
response = requests.post(INVOKE_URL_OCR, headers=headers, json=payload, timeout=60)
|
| 74 |
+
response.raise_for_status(); response_json = response.json()
|
| 75 |
+
except requests.exceptions.RequestException: return input_image
|
| 76 |
+
image_with_redactions = input_image.copy(); draw = ImageDraw.Draw(image_with_redactions)
|
| 77 |
+
img_width, img_height = image_with_redactions.size
|
| 78 |
+
radius = max(1, int(((img_width**2 + img_height**2)**0.5) / 100))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
try:
|
| 80 |
+
detections = response_json['data'][0]['text_detections']
|
| 81 |
+
for detection in detections:
|
| 82 |
+
bbox = detection.get("bounding_box")
|
| 83 |
+
if bbox and bbox.get("points"):
|
| 84 |
+
points = bbox["points"]
|
| 85 |
+
p1 = (points[0]['x'] * img_width, points[0]['y'] * img_height); p3 = (points[2]['x'] * img_width, points[2]['y'] * img_height)
|
| 86 |
+
sample_regions = [(p1[0], p1[1] - radius, p3[0], p1[1]), (p1[0], p3[1], p3[0], p3[1] + radius), (p1[0] - radius, p1[1], p1[0], p3[1]), (p3[0], p1[1], p3[0] + radius, p3[1])]
|
| 87 |
+
redaction_color = _get_average_color_from_regions(image_with_redactions, sample_regions)
|
| 88 |
+
draw.rectangle([p1, p3], fill=redaction_color)
|
| 89 |
+
return image_with_redactions
|
| 90 |
+
except (KeyError, IndexError, TypeError): return input_image
|
| 91 |
+
|
| 92 |
+
def redact_pictures_in_image(image_source: Union[str, Image.Image], api_key: str, callback: callable = None) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
"""
|
| 94 |
+
Analyzes an image to find pictures, then redacts text within those pictures.
|
| 95 |
+
Now accepts a file path, base64 string, or a PIL Image object directly.
|
| 96 |
"""
|
| 97 |
+
def _progress(message: str):
|
| 98 |
+
if callback: callback(message)
|
| 99 |
+
_progress("Loading image for processing...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
try:
|
| 101 |
+
if isinstance(image_source, Image.Image):
|
| 102 |
+
input_image = image_source.convert("RGB")
|
| 103 |
+
elif os.path.exists(image_source):
|
| 104 |
+
input_image = Image.open(image_source).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
+
input_image = Image.open(io.BytesIO(base64.b64decode(image_source))).convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
+
raise ValueError(f"Invalid image_source. Error: {e}")
|
| 109 |
+
image_to_analyze = input_image
|
| 110 |
+
original_width, original_height = input_image.size
|
| 111 |
+
if (original_width * original_height) > MAX_PIXELS_FOR_PARSER:
|
| 112 |
+
_progress(f"Image is large, resizing for analysis...")
|
| 113 |
+
scale = (MAX_PIXELS_FOR_PARSER / (original_width * original_height))**0.5
|
| 114 |
+
new_dims = (int(original_width * scale), int(original_height * scale))
|
| 115 |
+
image_to_analyze = input_image.resize(new_dims, Image.Resampling.LANCZOS)
|
| 116 |
+
_progress("Detecting 'Picture' elements...")
|
| 117 |
+
try:
|
| 118 |
+
picture_bboxes = _detect_pictures_with_parser(image_to_analyze, api_key)
|
| 119 |
+
except requests.exceptions.RequestException as e:
|
| 120 |
+
_progress(f"API Error during picture detection: {e}"); raise
|
| 121 |
+
if not picture_bboxes:
|
| 122 |
+
_progress("No 'Picture' elements found.")
|
| 123 |
+
return input_image
|
| 124 |
+
_progress(f"Found {len(picture_bboxes)} 'Picture' element(s). Redacting text...")
|
| 125 |
+
final_image = input_image.copy()
|
| 126 |
+
for i, box in enumerate(picture_bboxes):
|
| 127 |
+
_progress(f" - Processing picture {i + 1}/{len(picture_bboxes)}...")
|
| 128 |
+
x1, y1 = int(box["xmin"] * original_width), int(box["ymin"] * original_height)
|
| 129 |
+
x2, y2 = int(box["xmax"] * original_width), int(box["ymax"] * original_height)
|
| 130 |
+
cropped_element = input_image.crop((x1, y1, x2, y2))
|
| 131 |
+
redacted_crop = _redact_text_in_image(cropped_element, api_key)
|
| 132 |
+
final_image.paste(redacted_crop, (x1, y1))
|
| 133 |
+
_progress("Redaction for this page complete.")
|
| 134 |
+
return final_image
|
| 135 |
+
|
| 136 |
+
# =================================================================================
|
| 137 |
+
# GRADIO PDF PROCESSING APPLICATION
|
| 138 |
+
# =================================================================================
|
| 139 |
+
|
| 140 |
+
def process_pdf(pdf_file, progress=gr.Progress(track_tqdm=True)):
|
| 141 |
"""
|
| 142 |
+
Main function for the Gradio app. Takes an uploaded PDF file, processes each
|
| 143 |
+
page, and returns the path to the redacted output PDF.
|
|
|
|
| 144 |
"""
|
| 145 |
+
if pdf_file is None:
|
| 146 |
+
raise gr.Error("Please upload a PDF file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
+
api_key = os.getenv("NVIDIA_API_KEY")
|
| 149 |
+
if not api_key:
|
| 150 |
+
raise gr.Error("NVIDIA_API_KEY environment variable not set.")
|
| 151 |
|
| 152 |
+
log_messages = []
|
| 153 |
+
def progress_callback(message):
|
| 154 |
+
print(message) # Also print to console for debugging
|
| 155 |
+
log_messages.append(message)
|
| 156 |
|
| 157 |
+
try:
|
| 158 |
+
pdf_path = pdf_file.name
|
| 159 |
+
doc = fitz.open(pdf_path)
|
| 160 |
+
processed_pages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
for page_num in progress.tqdm(range(len(doc)), desc="Processing PDF Pages"):
|
| 163 |
+
progress_callback(f"\n--- Processing Page {page_num + 1} of {len(doc)} ---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
# Convert page to image (150 DPI is a good balance of quality and size)
|
| 166 |
+
page = doc.load_page(page_num)
|
| 167 |
+
pix = page.get_pixmap(dpi=150)
|
| 168 |
+
page_image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 169 |
+
|
| 170 |
+
# Run the redaction pipeline on the single page image
|
| 171 |
+
processed_image = redact_pictures_in_image(
|
| 172 |
+
image_source=page_image,
|
| 173 |
+
api_key=api_key,
|
| 174 |
+
callback=progress_callback
|
| 175 |
+
)
|
| 176 |
+
processed_pages.append(processed_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
progress_callback("\n--- Finalizing PDF ---")
|
| 179 |
+
if not processed_pages:
|
| 180 |
+
raise gr.Error("No pages were processed from the PDF.")
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
# Save processed images into a new PDF
|
| 183 |
+
output_pdf_path = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False).name
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
+
processed_pages[0].save(
|
| 186 |
+
output_pdf_path,
|
| 187 |
+
"PDF",
|
| 188 |
+
resolution=100.0,
|
| 189 |
+
save_all=True,
|
| 190 |
+
append_images=processed_pages[1:]
|
| 191 |
+
)
|
| 192 |
+
progress_callback(f"Successfully created redacted PDF: {os.path.basename(output_pdf_path)}")
|
| 193 |
|
| 194 |
+
return output_pdf_path, "\n".join(log_messages)
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
gr.Error(f"An error occurred: {e}")
|
| 198 |
+
return None, f"An error occurred: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
# --- Gradio UI Definition ---
|
| 202 |
if __name__ == "__main__":
|
| 203 |
+
with gr.Blocks(theme=gr.themes.Default(), title="NVIDIA PDF Redactor") as demo:
|
|
|
|
| 204 |
gr.Markdown(
|
| 205 |
"""
|
| 206 |
+
# document Redactor for Pictures
|
| 207 |
+
Upload a PDF document. The tool will scan each page for pictures, redact any text found exclusively
|
| 208 |
+
within those pictures, and then generate a new, downloadable PDF with the redactions.
|
| 209 |
+
Pages without pictures are skipped to save time and cost.
|
| 210 |
"""
|
| 211 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
with gr.Row():
|
| 213 |
+
with gr.Column(scale=1):
|
| 214 |
+
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 215 |
+
process_btn = gr.Button("🚀 Process PDF and Redact Pictures", variant="primary")
|
| 216 |
+
with gr.Column(scale=2):
|
| 217 |
+
pdf_output = gr.File(label="Download Redacted PDF", interactive=False)
|
| 218 |
+
status_log = gr.Textbox(label="Processing Log", lines=15, interactive=False)
|
| 219 |
+
|
| 220 |
+
process_btn.click(
|
| 221 |
+
fn=process_pdf,
|
| 222 |
+
inputs=[pdf_input],
|
| 223 |
+
outputs=[pdf_output, status_log]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
)
|
| 225 |
|
| 226 |
+
gr.Markdown("---")
|
| 227 |
+
gr.Markdown("Powered by [NVIDIA NIM](https://build.nvidia.com/explore/discover).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
demo.launch(debug=True)
|