Upload 2 files
Browse files- app.py +193 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
+
import sys
|
| 5 |
+
import io
|
| 6 |
+
import contextlib
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import Optional, List, Any, Tuple
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import streamlit as st
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import base64
|
| 13 |
+
from io import BytesIO
|
| 14 |
+
from together import Together
|
| 15 |
+
from e2b_code_interpreter import Sandbox
|
| 16 |
+
|
| 17 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="pydantic")
|
| 18 |
+
|
| 19 |
+
pattern = re.compile(r"```python\n(.*?)\n```", re.DOTALL)
|
| 20 |
+
|
| 21 |
+
def code_interpret(e2b_code_interpreter: Sandbox, code: str) -> Optional[List[Any]]:
|
| 22 |
+
with st.spinner('Executing code in E2B sandbox...'):
|
| 23 |
+
stdout_capture = io.StringIO()
|
| 24 |
+
stderr_capture = io.StringIO()
|
| 25 |
+
|
| 26 |
+
with contextlib.redirect_stdout(stdout_capture), contextlib.redirect_stderr(stderr_capture):
|
| 27 |
+
with warnings.catch_warnings():
|
| 28 |
+
warnings.simplefilter("ignore")
|
| 29 |
+
exec = e2b_code_interpreter.run_code(code)
|
| 30 |
+
|
| 31 |
+
if stderr_capture.getvalue():
|
| 32 |
+
print("[Code Interpreter Warnings/Errors]", file=sys.stderr)
|
| 33 |
+
print(stderr_capture.getvalue(), file=sys.stderr)
|
| 34 |
+
|
| 35 |
+
if stdout_capture.getvalue():
|
| 36 |
+
print("[Code Interpreter Output]", file=sys.stdout)
|
| 37 |
+
print(stdout_capture.getvalue(), file=sys.stdout)
|
| 38 |
+
|
| 39 |
+
if exec.error:
|
| 40 |
+
print(f"[Code Interpreter ERROR] {exec.error}", file=sys.stderr)
|
| 41 |
+
return None
|
| 42 |
+
return exec.results
|
| 43 |
+
|
| 44 |
+
def match_code_blocks(llm_response: str) -> str:
|
| 45 |
+
match = pattern.search(llm_response)
|
| 46 |
+
if match:
|
| 47 |
+
code = match.group(1)
|
| 48 |
+
return code
|
| 49 |
+
return ""
|
| 50 |
+
|
| 51 |
+
def chat_with_llm(e2b_code_interpreter: Sandbox, user_message: str, dataset_path: str) -> Tuple[Optional[List[Any]], str]:
|
| 52 |
+
# Update system prompt to include dataset path information
|
| 53 |
+
system_prompt = f"""You're a Python data scientist and data visualization expert. You are given a dataset at path '{dataset_path}' and also the user's query.
|
| 54 |
+
You need to analyze the dataset and answer the user's query with a response and you run Python code to solve them.
|
| 55 |
+
IMPORTANT: Always use the dataset path variable '{dataset_path}' in your code when reading the CSV file."""
|
| 56 |
+
|
| 57 |
+
messages = [
|
| 58 |
+
{"role": "system", "content": system_prompt},
|
| 59 |
+
{"role": "user", "content": user_message},
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
with st.spinner('Getting response from Together AI LLM model...'):
|
| 63 |
+
client = Together(api_key=st.session_state.together_api_key)
|
| 64 |
+
response = client.chat.completions.create(
|
| 65 |
+
model=st.session_state.model_name,
|
| 66 |
+
messages=messages,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
response_message = response.choices[0].message
|
| 70 |
+
python_code = match_code_blocks(response_message.content)
|
| 71 |
+
|
| 72 |
+
if python_code:
|
| 73 |
+
code_interpreter_results = code_interpret(e2b_code_interpreter, python_code)
|
| 74 |
+
return code_interpreter_results, response_message.content
|
| 75 |
+
else:
|
| 76 |
+
st.warning(f"Failed to match any Python code in model's response")
|
| 77 |
+
return None, response_message.content
|
| 78 |
+
|
| 79 |
+
def upload_dataset(code_interpreter: Sandbox, uploaded_file) -> str:
|
| 80 |
+
dataset_path = f"./{uploaded_file.name}"
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
code_interpreter.files.write(dataset_path, uploaded_file)
|
| 84 |
+
return dataset_path
|
| 85 |
+
except Exception as error:
|
| 86 |
+
st.error(f"Error during file upload: {error}")
|
| 87 |
+
raise error
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def main():
|
| 91 |
+
"""Main Streamlit application."""
|
| 92 |
+
st.set_page_config(page_title="π AI Data Visualization Agent", page_icon="π", layout="wide")
|
| 93 |
+
|
| 94 |
+
st.title("π AI Data Visualization Agent")
|
| 95 |
+
st.write("Upload your dataset and ask questions about it!")
|
| 96 |
+
|
| 97 |
+
# Initialize session state variables
|
| 98 |
+
if 'together_api_key' not in st.session_state:
|
| 99 |
+
st.session_state.together_api_key = ''
|
| 100 |
+
if 'e2b_api_key' not in st.session_state:
|
| 101 |
+
st.session_state.e2b_api_key = ''
|
| 102 |
+
if 'model_name' not in st.session_state:
|
| 103 |
+
st.session_state.model_name = ''
|
| 104 |
+
|
| 105 |
+
# Sidebar for API keys and model configuration
|
| 106 |
+
with st.sidebar:
|
| 107 |
+
st.header("π API Keys and Model Configuration")
|
| 108 |
+
st.session_state.together_api_key = st.text_input("Together AI API Key", type="password")
|
| 109 |
+
st.info("π‘ Everyone gets a free $1 credit by Together AI - AI Acceleration Cloud platform")
|
| 110 |
+
st.markdown("[Get Together AI API Key](https://api.together.ai/signin)")
|
| 111 |
+
|
| 112 |
+
st.session_state.e2b_api_key = st.text_input("Enter E2B API Key", type="password")
|
| 113 |
+
st.markdown("[Get E2B API Key](https://e2b.dev/docs/legacy/getting-started/api-key)")
|
| 114 |
+
|
| 115 |
+
# Add model selection dropdown
|
| 116 |
+
model_options = {
|
| 117 |
+
"Meta-Llama 3.1 405B": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
| 118 |
+
"DeepSeek V3": "deepseek-ai/DeepSeek-V3",
|
| 119 |
+
"Qwen 2.5 7B": "Qwen/Qwen2.5-7B-Instruct-Turbo",
|
| 120 |
+
"Meta-Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct-Turbo"
|
| 121 |
+
}
|
| 122 |
+
st.session_state.model_name = st.selectbox(
|
| 123 |
+
"Select Model",
|
| 124 |
+
options=list(model_options.keys()),
|
| 125 |
+
index=0 # Default to first option
|
| 126 |
+
)
|
| 127 |
+
st.session_state.model_name = model_options[st.session_state.model_name]
|
| 128 |
+
|
| 129 |
+
# Main content layout
|
| 130 |
+
col1, col2 = st.columns([1, 2]) # Split the main content into two columns
|
| 131 |
+
|
| 132 |
+
with col1:
|
| 133 |
+
st.header("π Upload Dataset")
|
| 134 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv", key="file_uploader")
|
| 135 |
+
|
| 136 |
+
if uploaded_file is not None:
|
| 137 |
+
# Display dataset with toggle
|
| 138 |
+
df = pd.read_csv(uploaded_file)
|
| 139 |
+
st.write("### Dataset Preview")
|
| 140 |
+
show_full = st.checkbox("Show full dataset")
|
| 141 |
+
if show_full:
|
| 142 |
+
st.dataframe(df)
|
| 143 |
+
else:
|
| 144 |
+
st.write("Preview (first 5 rows):")
|
| 145 |
+
st.dataframe(df.head())
|
| 146 |
+
|
| 147 |
+
with col2:
|
| 148 |
+
if uploaded_file is not None:
|
| 149 |
+
st.header("β Ask a Question")
|
| 150 |
+
query = st.text_area(
|
| 151 |
+
"What would you like to know about your data?",
|
| 152 |
+
"Can you compare the average cost for two people between different categories?",
|
| 153 |
+
height=100
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if st.button("Analyze", type="primary", key="analyze_button"):
|
| 157 |
+
if not st.session_state.together_api_key or not st.session_state.e2b_api_key:
|
| 158 |
+
st.error("Please enter both API keys in the sidebar.")
|
| 159 |
+
else:
|
| 160 |
+
with Sandbox(api_key=st.session_state.e2b_api_key) as code_interpreter:
|
| 161 |
+
# Upload the dataset
|
| 162 |
+
dataset_path = upload_dataset(code_interpreter, uploaded_file)
|
| 163 |
+
|
| 164 |
+
# Pass dataset_path to chat_with_llm
|
| 165 |
+
code_results, llm_response = chat_with_llm(code_interpreter, query, dataset_path)
|
| 166 |
+
|
| 167 |
+
# Display LLM's text response
|
| 168 |
+
st.header("π€ AI Response")
|
| 169 |
+
st.write(llm_response)
|
| 170 |
+
|
| 171 |
+
# Display results/visualizations
|
| 172 |
+
if code_results:
|
| 173 |
+
st.header("π Analysis Results")
|
| 174 |
+
for result in code_results:
|
| 175 |
+
if hasattr(result, 'png') and result.png: # Check if PNG data is available
|
| 176 |
+
# Decode the base64-encoded PNG data
|
| 177 |
+
png_data = base64.b64decode(result.png)
|
| 178 |
+
|
| 179 |
+
# Convert PNG data to an image and display it
|
| 180 |
+
image = Image.open(BytesIO(png_data))
|
| 181 |
+
st.image(image, caption="Generated Visualization", use_container_width=True)
|
| 182 |
+
elif hasattr(result, 'figure'): # For matplotlib figures
|
| 183 |
+
fig = result.figure # Extract the matplotlib figure
|
| 184 |
+
st.pyplot(fig) # Display using st.pyplot
|
| 185 |
+
elif hasattr(result, 'show'): # For plotly figures
|
| 186 |
+
st.plotly_chart(result)
|
| 187 |
+
elif isinstance(result, (pd.DataFrame, pd.Series)):
|
| 188 |
+
st.dataframe(result)
|
| 189 |
+
else:
|
| 190 |
+
st.write(result)
|
| 191 |
+
|
| 192 |
+
if __name__ == "__main__":
|
| 193 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
together==1.3.10
|
| 2 |
+
e2b-code-interpreter==1.0.3
|
| 3 |
+
e2b==1.0.5
|
| 4 |
+
Pillow==10.4.0
|
| 5 |
+
streamlit
|
| 6 |
+
pandas
|
| 7 |
+
matplotlib
|