Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,89 +3,77 @@ import pandas as pd
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
def process_data(df):
|
| 6 |
-
# Clean data and
|
| 7 |
-
df = df[
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
df['Start Date'] = pd.to_datetime(
|
| 11 |
-
df['Date'].str.split(' to ').str[0],
|
| 12 |
-
format='%d/%b/%y',
|
| 13 |
-
errors='coerce'
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
# Filter valid dates and assign weeks
|
| 17 |
-
df = df.dropna(subset=['Start Date'])
|
| 18 |
-
df['Week'] = df['Start Date'].apply(
|
| 19 |
-
lambda x: 1 if x <= pd.Timestamp('2025-01-05') else 2
|
| 20 |
-
)
|
| 21 |
-
|
| 22 |
-
# Consolidate billable categories
|
| 23 |
df['Category'] = df['Project Category'].apply(
|
| 24 |
-
lambda x: 'Billable' if 'Billable' in x else x
|
| 25 |
)
|
| 26 |
|
| 27 |
# Aggregate data
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
categories = ['Billable', 'Non-Billable', 'Leaves']
|
| 32 |
-
utilization = utilization.reindex(categories, axis=1, fill_value=0)
|
| 33 |
-
total_hours = utilization.sum(axis=1)
|
| 34 |
-
utilization_percent = utilization.div(total_hours, axis=0) * 100
|
| 35 |
-
|
| 36 |
-
return utilization_percent
|
| 37 |
|
| 38 |
-
def
|
| 39 |
fig, ax = plt.subplots(figsize=(6, 6))
|
| 40 |
-
labels = week_data.index[week_data > 0]
|
| 41 |
-
sizes = week_data[week_data > 0]
|
| 42 |
-
|
| 43 |
wedges, texts, autotexts = ax.pie(
|
| 44 |
-
|
| 45 |
-
labels=
|
| 46 |
autopct='%1.1f%%',
|
| 47 |
colors=['#4CAF50', '#FFC107', '#9E9E9E'],
|
| 48 |
startangle=90
|
| 49 |
)
|
| 50 |
-
|
| 51 |
plt.setp(autotexts, size=10, weight="bold", color='white')
|
| 52 |
-
ax.set_title(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
return fig
|
| 54 |
|
| 55 |
def main():
|
| 56 |
-
st.title('QA
|
| 57 |
|
| 58 |
-
uploaded_file = st.file_uploader("Upload
|
| 59 |
|
| 60 |
if uploaded_file:
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
if 1 in utilization_percent.index:
|
| 71 |
-
week1 = utilization_percent.loc[1]
|
| 72 |
-
st.pyplot(create_utilization_chart(week1, 1))
|
| 73 |
-
else:
|
| 74 |
-
st.warning("No data for Week 1")
|
| 75 |
-
|
| 76 |
-
with col2:
|
| 77 |
-
if 2 in utilization_percent.index:
|
| 78 |
-
week2 = utilization_percent.loc[2]
|
| 79 |
-
st.pyplot(create_utilization_chart(week2, 2))
|
| 80 |
-
else:
|
| 81 |
-
st.warning("No data for Week 2")
|
| 82 |
-
|
| 83 |
-
# Show raw data for verification
|
| 84 |
-
st.subheader("Processed Data Preview")
|
| 85 |
-
st.dataframe(utilization_percent)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|
| 91 |
main()
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
def process_data(df):
|
| 6 |
+
# Clean data and consolidate categories
|
| 7 |
+
df = df[['Project Category', 'Logged']].copy()
|
| 8 |
|
| 9 |
+
# Map to main categories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
df['Category'] = df['Project Category'].apply(
|
| 11 |
+
lambda x: 'Billable' if 'Billable' in x else x.strip()
|
| 12 |
)
|
| 13 |
|
| 14 |
# Aggregate data
|
| 15 |
+
summary = df.groupby('Category')['Logged'].sum().reset_index()
|
| 16 |
+
total = summary['Logged'].sum()
|
| 17 |
+
summary['Percentage'] = (summary['Logged'] / total * 100).round(1)
|
| 18 |
|
| 19 |
+
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
def create_pie_chart(data):
|
| 22 |
fig, ax = plt.subplots(figsize=(6, 6))
|
|
|
|
|
|
|
|
|
|
| 23 |
wedges, texts, autotexts = ax.pie(
|
| 24 |
+
data['Logged'],
|
| 25 |
+
labels=data['Category'],
|
| 26 |
autopct='%1.1f%%',
|
| 27 |
colors=['#4CAF50', '#FFC107', '#9E9E9E'],
|
| 28 |
startangle=90
|
| 29 |
)
|
|
|
|
| 30 |
plt.setp(autotexts, size=10, weight="bold", color='white')
|
| 31 |
+
ax.set_title('Overall Utilization', pad=20)
|
| 32 |
+
return fig
|
| 33 |
+
|
| 34 |
+
def create_bar_chart(data):
|
| 35 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 36 |
+
data[data['Category'] == 'Non-Billable'].plot(
|
| 37 |
+
kind='bar',
|
| 38 |
+
x='Project Category',
|
| 39 |
+
y='Logged',
|
| 40 |
+
ax=ax,
|
| 41 |
+
legend=False
|
| 42 |
+
)
|
| 43 |
+
ax.set_title('Non-Billable Details')
|
| 44 |
+
ax.set_ylabel('Hours')
|
| 45 |
+
plt.xticks(rotation=45)
|
| 46 |
return fig
|
| 47 |
|
| 48 |
def main():
|
| 49 |
+
st.title('QA Utilization Dashboard')
|
| 50 |
|
| 51 |
+
uploaded_file = st.file_uploader("Upload Timesheet", type=['xls', 'xlsx'])
|
| 52 |
|
| 53 |
if uploaded_file:
|
| 54 |
+
df = pd.read_excel(uploaded_file, sheet_name='Report')
|
| 55 |
+
processed_data = process_data(df)
|
| 56 |
+
|
| 57 |
+
# Show main visualization
|
| 58 |
+
st.header("Overall Utilization")
|
| 59 |
+
col1, col2 = st.columns([2, 1])
|
| 60 |
+
|
| 61 |
+
with col1:
|
| 62 |
+
st.pyplot(create_pie_chart(processed_data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
with col2:
|
| 65 |
+
st.dataframe(
|
| 66 |
+
processed_data[['Category', 'Logged', 'Percentage']],
|
| 67 |
+
hide_index=True,
|
| 68 |
+
column_config={
|
| 69 |
+
'Logged': 'Hours',
|
| 70 |
+
'Percentage': st.column_config.NumberColumn(format="%.1f%%")
|
| 71 |
+
}
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Show non-billable details
|
| 75 |
+
st.header("Non-Billable Breakdown")
|
| 76 |
+
st.pyplot(create_bar_chart(df))
|
| 77 |
|
| 78 |
if __name__ == "__main__":
|
| 79 |
main()
|