Update app.py
Browse files
app.py
CHANGED
|
@@ -1,56 +1,245 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
# Firebase
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
try:
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
if response.status_code == 200:
|
| 13 |
-
user_data = response.json()
|
| 14 |
-
return user_data['localId'], user_data['idToken']
|
| 15 |
-
else:
|
| 16 |
-
return None, None
|
| 17 |
except Exception as e:
|
| 18 |
-
st.error(f"Error
|
| 19 |
-
return
|
| 20 |
-
|
| 21 |
-
def main():
|
| 22 |
-
st.set_page_config(page_title="Login", layout="centered")
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
else:
|
| 53 |
-
st.
|
| 54 |
|
| 55 |
if __name__ == "__main__":
|
| 56 |
-
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import firebase_admin
|
| 3 |
+
from firebase_admin import credentials, db
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from datetime import datetime
|
| 7 |
|
| 8 |
+
# Initialize Firebase Realtime Database
|
| 9 |
+
try:
|
| 10 |
+
app = firebase_admin.get_app()
|
| 11 |
+
except ValueError:
|
| 12 |
+
cred = credentials.Certificate("serviceAccountKey.json")
|
| 13 |
+
app = firebase_admin.initialize_app(cred, {
|
| 14 |
+
'databaseURL': 'https://transacapp-22b6e-default-rtdb.firebaseio.com/'
|
| 15 |
+
})
|
| 16 |
+
|
| 17 |
+
def fetch_usernames():
|
| 18 |
+
"""Fetch list of all usernames from Firebase"""
|
| 19 |
try:
|
| 20 |
+
ref = db.reference('financialMessages')
|
| 21 |
+
users = ref.get()
|
| 22 |
+
if users:
|
| 23 |
+
return list(users.keys())
|
| 24 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
except Exception as e:
|
| 26 |
+
st.error(f"Error fetching usernames: {str(e)}")
|
| 27 |
+
return []
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def fetch_user_transactions(username, selected_month):
|
| 30 |
+
"""Fetch financial messages for a specific user and month from Firebase"""
|
| 31 |
+
try:
|
| 32 |
+
ref = db.reference(f'financialMessages/{username}/{selected_month}')
|
| 33 |
+
transactions = ref.get()
|
| 34 |
+
|
| 35 |
+
if not transactions:
|
| 36 |
+
return []
|
| 37 |
|
| 38 |
+
messages = []
|
| 39 |
+
for transaction_id, data in transactions.items():
|
| 40 |
+
if isinstance(data, dict):
|
| 41 |
+
messages.append({
|
| 42 |
+
'Person Name': data.get('personName', ''),
|
| 43 |
+
'Account Number': data.get('accountNumber', ''),
|
| 44 |
+
'Amount': float(data.get('amount', 0)),
|
| 45 |
+
'Reference No': data.get('referenceNo', ''),
|
| 46 |
+
'Transaction Date': data.get('transactionDate', ''),
|
| 47 |
+
'Transaction Type': data.get('transactionType', '')
|
| 48 |
+
})
|
| 49 |
+
|
| 50 |
+
return messages
|
| 51 |
+
except Exception as e:
|
| 52 |
+
st.error(f"Error fetching data: {str(e)}")
|
| 53 |
+
return []
|
| 54 |
|
| 55 |
+
def create_transaction_distribution_chart(df):
|
| 56 |
+
"""Create an enhanced transaction distribution visualization with multiple chart types"""
|
| 57 |
+
# Calculate transaction type summaries
|
| 58 |
+
type_summary = df.groupby('Transaction Type').agg({
|
| 59 |
+
'Person Name': 'count',
|
| 60 |
+
'Amount': ['sum', 'mean', 'min', 'max']
|
| 61 |
+
}).round(2)
|
| 62 |
+
|
| 63 |
+
type_summary.columns = ['Count', 'Total Amount', 'Average Amount', 'Min Amount', 'Max Amount']
|
| 64 |
+
type_summary = type_summary.reset_index()
|
| 65 |
+
|
| 66 |
+
# Create bar chart comparing transaction counts and amounts
|
| 67 |
+
fig_comparison = px.bar(
|
| 68 |
+
type_summary,
|
| 69 |
+
x='Transaction Type',
|
| 70 |
+
y=['Count', 'Total Amount'],
|
| 71 |
+
barmode='group',
|
| 72 |
+
title='Transaction Comparison by Type',
|
| 73 |
+
labels={'value': 'Value', 'variable': 'Metric'},
|
| 74 |
+
color_discrete_sequence=['#4C78A8', '#72B7B2'],
|
| 75 |
+
template='plotly_white'
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
fig_comparison.update_layout(
|
| 79 |
+
xaxis_title="Transaction Type",
|
| 80 |
+
yaxis_title="Value",
|
| 81 |
+
legend_title="Metric",
|
| 82 |
+
height=400,
|
| 83 |
+
showlegend=True,
|
| 84 |
+
legend=dict(
|
| 85 |
+
orientation="h",
|
| 86 |
+
yanchor="bottom",
|
| 87 |
+
y=1.02,
|
| 88 |
+
xanchor="right",
|
| 89 |
+
x=1
|
| 90 |
+
)
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Create detailed metrics visualization
|
| 94 |
+
fig_metrics = px.bar(
|
| 95 |
+
type_summary.melt(
|
| 96 |
+
id_vars=['Transaction Type'],
|
| 97 |
+
value_vars=['Average Amount', 'Min Amount', 'Max Amount']
|
| 98 |
+
),
|
| 99 |
+
x='Transaction Type',
|
| 100 |
+
y='value',
|
| 101 |
+
color='variable',
|
| 102 |
+
barmode='group',
|
| 103 |
+
title='Transaction Amount Metrics by Type',
|
| 104 |
+
labels={'value': 'Amount (₹)', 'variable': 'Metric'},
|
| 105 |
+
color_discrete_sequence=['#FF9DA7', '#9C755F', '#BAB0AC'],
|
| 106 |
+
template='plotly_white'
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
fig_metrics.update_layout(
|
| 110 |
+
xaxis_title="Transaction Type",
|
| 111 |
+
yaxis_title="Amount (₹)",
|
| 112 |
+
height=400,
|
| 113 |
+
showlegend=True,
|
| 114 |
+
legend=dict(
|
| 115 |
+
orientation="h",
|
| 116 |
+
yanchor="bottom",
|
| 117 |
+
y=1.02,
|
| 118 |
+
xanchor="right",
|
| 119 |
+
x=1
|
| 120 |
+
)
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Add hover information
|
| 124 |
+
for fig in [fig_comparison, fig_metrics]:
|
| 125 |
+
fig.update_traces(
|
| 126 |
+
hovertemplate="<br>".join([
|
| 127 |
+
"Transaction Type: %{x}",
|
| 128 |
+
"Value: %{y:,.2f}",
|
| 129 |
+
"<extra></extra>"
|
| 130 |
+
])
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
return fig_comparison, fig_metrics
|
| 134 |
|
| 135 |
+
def main():
|
| 136 |
+
st.set_page_config(page_title="Financial Transactions Dashboard", layout="wide")
|
| 137 |
+
|
| 138 |
+
# Header
|
| 139 |
+
st.title("Financial Transactions Dashboard")
|
| 140 |
+
st.markdown("---")
|
| 141 |
+
|
| 142 |
+
# Sidebar filters
|
| 143 |
+
st.sidebar.header("Filters")
|
| 144 |
|
| 145 |
+
# Username dropdown
|
| 146 |
+
usernames = fetch_usernames()
|
| 147 |
+
username = st.sidebar.selectbox(
|
| 148 |
+
"Select Username",
|
| 149 |
+
options=usernames if usernames else ["No users found"]
|
| 150 |
+
)
|
| 151 |
|
| 152 |
+
# Month selection
|
| 153 |
+
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
| 154 |
+
selected_month = st.sidebar.selectbox("Select Month", options=months)
|
| 155 |
+
|
| 156 |
+
if username and username != "No users found":
|
| 157 |
+
# Fetch data
|
| 158 |
+
data = fetch_user_transactions(username, selected_month)
|
| 159 |
+
|
| 160 |
+
if data:
|
| 161 |
+
df = pd.DataFrame(data)
|
| 162 |
+
df['Amount'] = pd.to_numeric(df['Amount'])
|
| 163 |
+
|
| 164 |
+
# Transaction type dropdown
|
| 165 |
+
transaction_type = st.sidebar.selectbox(
|
| 166 |
+
"Select Transaction Type",
|
| 167 |
+
options=["All", "debited", "credited"]
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Date filter
|
| 171 |
+
dates = df['Transaction Date'].unique()
|
| 172 |
+
selected_dates = st.sidebar.multiselect(
|
| 173 |
+
"Select Dates",
|
| 174 |
+
options=dates,
|
| 175 |
+
default=dates
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Apply filters
|
| 179 |
+
if transaction_type != "All":
|
| 180 |
+
masked_df = df[
|
| 181 |
+
(df['Transaction Type'] == transaction_type) &
|
| 182 |
+
(df['Transaction Date'].isin(selected_dates))
|
| 183 |
+
]
|
| 184 |
+
else:
|
| 185 |
+
masked_df = df[df['Transaction Date'].isin(selected_dates)]
|
| 186 |
+
|
| 187 |
+
# Dashboard metrics
|
| 188 |
+
col1, col2, col3 = st.columns(3)
|
| 189 |
+
|
| 190 |
+
with col1:
|
| 191 |
+
st.metric("Total Transactions", len(masked_df))
|
| 192 |
+
|
| 193 |
+
with col2:
|
| 194 |
+
total_debited = masked_df[masked_df['Transaction Type'] == 'debited']['Amount'].sum()
|
| 195 |
+
st.metric("Total Debited", f"₹ {total_debited:,.2f}")
|
| 196 |
+
|
| 197 |
+
with col3:
|
| 198 |
+
total_credited = masked_df[masked_df['Transaction Type'] == 'credited']['Amount'].sum()
|
| 199 |
+
st.metric("Total Credited", f"₹ {total_credited:,.2f}")
|
| 200 |
+
|
| 201 |
+
# Transactions table
|
| 202 |
+
st.subheader("Recent Transactions")
|
| 203 |
+
st.dataframe(
|
| 204 |
+
masked_df,
|
| 205 |
+
column_config={
|
| 206 |
+
"Amount": st.column_config.NumberColumn(
|
| 207 |
+
"Amount",
|
| 208 |
+
format="₹ %.2f"
|
| 209 |
+
)
|
| 210 |
+
},
|
| 211 |
+
hide_index=True
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Create transaction distribution visualizations
|
| 215 |
+
fig_count, fig_amount = create_transaction_distribution_chart(masked_df)
|
| 216 |
+
|
| 217 |
+
# Display visualizations in columns
|
| 218 |
+
st.subheader("Transaction Distribution Analysis")
|
| 219 |
+
col1, col2 = st.columns(2)
|
| 220 |
+
|
| 221 |
+
with col1:
|
| 222 |
+
st.plotly_chart(fig_count, use_container_width=True)
|
| 223 |
+
|
| 224 |
+
with col2:
|
| 225 |
+
st.plotly_chart(fig_amount, use_container_width=True)
|
| 226 |
+
|
| 227 |
+
# Daily transactions chart
|
| 228 |
+
st.subheader("Daily Transaction Amounts")
|
| 229 |
+
daily_amounts = masked_df.groupby('Transaction Date')['Amount'].sum()
|
| 230 |
+
st.line_chart(daily_amounts)
|
| 231 |
+
|
| 232 |
+
# Download button
|
| 233 |
+
if st.button("Download Transactions"):
|
| 234 |
+
csv = masked_df.to_csv(index=False)
|
| 235 |
+
st.download_button(
|
| 236 |
+
label="Download CSV",
|
| 237 |
+
data=csv,
|
| 238 |
+
file_name=f"{username}_{selected_month}_transactions.csv",
|
| 239 |
+
mime="text/csv"
|
| 240 |
+
)
|
| 241 |
else:
|
| 242 |
+
st.warning(f"No transactions found for user: {username} in {selected_month}")
|
| 243 |
|
| 244 |
if __name__ == "__main__":
|
| 245 |
+
main()
|