Akshayram1's picture
Update app.py
abc7bc3 verified
raw
history blame
5.24 kB
import streamlit as st
import firebase_admin
from firebase_admin import credentials, db
import pandas as pd
from datetime import datetime
# Initialize Firebase Realtime Database
try:
app = firebase_admin.get_app()
except ValueError:
cred = credentials.Certificate("serviceAccountKey.json")
app = firebase_admin.initialize_app(cred, {
'databaseURL': 'https://transacapp-22b6e-default-rtdb.firebaseio.com/' # Add your Firebase Realtime Database URL here
})
def fetch_user_transactions(username):
"""Fetch financial messages for a specific user from Firebase Realtime Database"""
try:
# Reference to the financial messages path for the specific user
ref = db.reference(f'financialMessages/{username}/Apr')
# Get all transactions
transactions = ref.get()
if not transactions:
return []
messages = []
# Convert the data to a list of dictionaries
for transaction_id, data in transactions.items():
if isinstance(data, dict): # Ensure we're only processing dictionary data
messages.append({
'Transaction ID': transaction_id,
'Account Number': data.get('accountNumber', ''),
'Amount': float(data.get('amount', 0)),
'Reference No': data.get('referenceNo', ''),
'Transaction Date': data.get('transactionDate', ''),
'Transaction Type': data.get('transactionType', '')
})
return messages
except Exception as e:
st.error(f"Error fetching data: {str(e)}")
return []
def main():
st.set_page_config(page_title="Financial Transactions Dashboard", layout="wide")
# Header
st.title("Financial Transactions Dashboard")
st.markdown("---")
# User input
username = st.text_input("Enter Username (e.g., Akshay Chame)", "Akshay Chame")
if username:
# Format username to match database structure (replace spaces with actual format)
formatted_username = username.strip()
# Fetch data
data = fetch_user_transactions(formatted_username)
if data:
df = pd.DataFrame(data)
# Convert amount to numeric
df['Amount'] = pd.to_numeric(df['Amount'])
# Sidebar filters
st.sidebar.header("Filters")
# Transaction type filter
transaction_types = st.sidebar.multiselect(
"Select Transaction Type",
options=df['Transaction Type'].unique(),
default=df['Transaction Type'].unique()
)
# Date range filter
dates = df['Transaction Date'].unique()
selected_dates = st.sidebar.multiselect(
"Select Dates",
options=dates,
default=dates
)
# Apply filters
masked_df = df[
(df['Transaction Type'].isin(transaction_types)) &
(df['Transaction Date'].isin(selected_dates))
]
# Dashboard metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Transactions", len(masked_df))
with col2:
total_debited = masked_df[masked_df['Transaction Type'] == 'debited']['Amount'].sum()
st.metric("Total Debited", f"₹ {total_debited:,.2f}")
with col3:
total_credited = masked_df[masked_df['Transaction Type'] == 'credited']['Amount'].sum()
st.metric("Total Credited", f"₹ {total_credited:,.2f}")
# Transactions table
st.subheader("Recent Transactions")
st.dataframe(
masked_df,
column_config={
"Amount": st.column_config.NumberColumn(
"Amount",
format="₹ %.2f"
)
},
hide_index=True
)
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Transaction Type Distribution")
type_counts = masked_df['Transaction Type'].value_counts()
st.bar_chart(type_counts)
with col2:
st.subheader("Daily Transaction Amounts")
daily_amounts = masked_df.groupby('Transaction Date')['Amount'].sum()
st.line_chart(daily_amounts)
# Download button
if st.button("Download Transactions"):
csv = masked_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=csv,
file_name=f"{username}_transactions.csv",
mime="text/csv"
)
else:
st.warning(f"No transactions found for user: {username}")
if __name__ == "__main__":
main()