Spaces:
Running
Running
Akshayram1
commited on
Upload 2 files
Browse files- app.py +150 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from urllib.request import urlopen, Request
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
import plotly
|
6 |
+
import plotly.express as px
|
7 |
+
import json # for graph plotting in website
|
8 |
+
# NLTK VADER for sentiment analysis
|
9 |
+
import nltk
|
10 |
+
nltk.downloader.download('vader_lexicon')
|
11 |
+
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
12 |
+
|
13 |
+
import subprocess
|
14 |
+
import os
|
15 |
+
|
16 |
+
import datetime
|
17 |
+
|
18 |
+
st.set_page_config(page_title = "Akshay's Stock News Sentiment Analyzer", layout = "wide")
|
19 |
+
|
20 |
+
|
21 |
+
def get_news(ticker):
|
22 |
+
url = finviz_url + ticker
|
23 |
+
req = Request(url=url,headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'})
|
24 |
+
response = urlopen(req)
|
25 |
+
# Read the contents of the file into 'html'
|
26 |
+
html = BeautifulSoup(response)
|
27 |
+
# Find 'news-table' in the Soup and load it into 'news_table'
|
28 |
+
news_table = html.find(id='news-table')
|
29 |
+
return news_table
|
30 |
+
|
31 |
+
# parse news into dataframe
|
32 |
+
def parse_news(news_table):
|
33 |
+
parsed_news = []
|
34 |
+
today_string = datetime.datetime.today().strftime('%Y-%m-%d')
|
35 |
+
|
36 |
+
for x in news_table.findAll('tr'):
|
37 |
+
try:
|
38 |
+
# read the text from each tr tag into text
|
39 |
+
# get text from a only
|
40 |
+
text = x.a.get_text()
|
41 |
+
# splite text in the td tag into a list
|
42 |
+
date_scrape = x.td.text.split()
|
43 |
+
# if the length of 'date_scrape' is 1, load 'time' as the only element
|
44 |
+
|
45 |
+
if len(date_scrape) == 1:
|
46 |
+
time = date_scrape[0]
|
47 |
+
|
48 |
+
# else load 'date' as the 1st element and 'time' as the second
|
49 |
+
else:
|
50 |
+
date = date_scrape[0]
|
51 |
+
time = date_scrape[1]
|
52 |
+
|
53 |
+
# Append ticker, date, time and headline as a list to the 'parsed_news' list
|
54 |
+
parsed_news.append([date, time, text])
|
55 |
+
except:
|
56 |
+
pass
|
57 |
+
|
58 |
+
# Set column names
|
59 |
+
columns = ['date', 'time', 'headline']
|
60 |
+
# Convert the parsed_news list into a DataFrame called 'parsed_and_scored_news'
|
61 |
+
parsed_news_df = pd.DataFrame(parsed_news, columns=columns)
|
62 |
+
# Create a pandas datetime object from the strings in 'date' and 'time' column
|
63 |
+
parsed_news_df['date'] = parsed_news_df['date'].replace("Today", today_string)
|
64 |
+
parsed_news_df['datetime'] = pd.to_datetime(parsed_news_df['date'] + ' ' + parsed_news_df['time'])
|
65 |
+
|
66 |
+
return parsed_news_df
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
def score_news(parsed_news_df):
|
71 |
+
# Instantiate the sentiment intensity analyzer
|
72 |
+
vader = SentimentIntensityAnalyzer()
|
73 |
+
|
74 |
+
# Iterate through the headlines and get the polarity scores using vader
|
75 |
+
scores = parsed_news_df['headline'].apply(vader.polarity_scores).tolist()
|
76 |
+
|
77 |
+
# Convert the 'scores' list of dicts into a DataFrame
|
78 |
+
scores_df = pd.DataFrame(scores)
|
79 |
+
|
80 |
+
# Join the DataFrames of the news and the list of dicts
|
81 |
+
parsed_and_scored_news = parsed_news_df.join(scores_df, rsuffix='_right')
|
82 |
+
parsed_and_scored_news = parsed_and_scored_news.set_index('datetime')
|
83 |
+
parsed_and_scored_news = parsed_and_scored_news.drop(['date', 'time'], 1)
|
84 |
+
parsed_and_scored_news = parsed_and_scored_news.rename(columns={"compound": "sentiment_score"})
|
85 |
+
|
86 |
+
return parsed_and_scored_news
|
87 |
+
|
88 |
+
|
89 |
+
def plot_hourly_sentiment(parsed_and_scored_news, ticker):
|
90 |
+
|
91 |
+
# Group by date and ticker columns from scored_news and calculate the mean
|
92 |
+
mean_scores = parsed_and_scored_news.resample('H').mean()
|
93 |
+
|
94 |
+
# Plot a bar chart with plotly
|
95 |
+
fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title = ticker + ' Hourly Sentiment Scores')
|
96 |
+
return fig # instead of using fig.show(), we return fig and turn it into a graphjson object for displaying in web page later
|
97 |
+
|
98 |
+
def plot_daily_sentiment(parsed_and_scored_news, ticker):
|
99 |
+
|
100 |
+
# Group by date and ticker columns from scored_news and calculate the mean
|
101 |
+
mean_scores = parsed_and_scored_news.resample('D').mean()
|
102 |
+
|
103 |
+
# Plot a bar chart with plotly
|
104 |
+
fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title = ticker + ' Daily Sentiment Scores')
|
105 |
+
return fig # instead of using fig.show(), we return fig and turn it into a graphjson object for displaying in web page later
|
106 |
+
|
107 |
+
# for extracting data from finviz
|
108 |
+
finviz_url = 'https://finviz.com/quote.ashx?t='
|
109 |
+
|
110 |
+
|
111 |
+
st.header("Bohmian's Stock News Sentiment Analyzer")
|
112 |
+
|
113 |
+
ticker = st.text_input('Enter Stock Ticker', '').upper()
|
114 |
+
|
115 |
+
df = pd.DataFrame({'datetime': datetime.datetime.now(), 'ticker': ticker}, index = [0])
|
116 |
+
|
117 |
+
|
118 |
+
try:
|
119 |
+
st.subheader("Hourly and Daily Sentiment of {} Stock".format(ticker))
|
120 |
+
news_table = get_news(ticker)
|
121 |
+
parsed_news_df = parse_news(news_table)
|
122 |
+
print(parsed_news_df)
|
123 |
+
parsed_and_scored_news = score_news(parsed_news_df)
|
124 |
+
fig_hourly = plot_hourly_sentiment(parsed_and_scored_news, ticker)
|
125 |
+
fig_daily = plot_daily_sentiment(parsed_and_scored_news, ticker)
|
126 |
+
|
127 |
+
st.plotly_chart(fig_hourly)
|
128 |
+
st.plotly_chart(fig_daily)
|
129 |
+
|
130 |
+
description = """
|
131 |
+
The above chart averages the sentiment scores of {} stock hourly and daily.
|
132 |
+
The table below gives each of the most recent headlines of the stock and the negative, neutral, positive and an aggregated sentiment score.
|
133 |
+
The news headlines are obtained from the FinViz website.
|
134 |
+
Sentiments are given by the nltk.sentiment.vader Python library.
|
135 |
+
""".format(ticker)
|
136 |
+
|
137 |
+
st.write(description)
|
138 |
+
st.table(parsed_and_scored_news)
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
print(str(e))
|
142 |
+
st.write("Enter a correct stock ticker, e.g. 'AAPL' above and hit Enter.")
|
143 |
+
|
144 |
+
hide_streamlit_style = """
|
145 |
+
<style>
|
146 |
+
#MainMenu {visibility: hidden;}
|
147 |
+
footer {visibility: hidden;}
|
148 |
+
</style>
|
149 |
+
"""
|
150 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.11.1
|
2 |
+
pandas==1.3.4
|
3 |
+
nltk
|
4 |
+
urllib3
|
5 |
+
bs4
|
6 |
+
plotly
|
7 |
+
gunicorn
|
8 |
+
psycopg2-binary
|