Akjava commited on
Commit
7a3d678
·
1 Parent(s): 8191663
Files changed (4) hide show
  1. app.py +103 -0
  2. demo_header.html +8 -0
  3. flux1_inpaint.py +61 -0
  4. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import re
4
+ from PIL import Image
5
+ import flux1_inpaint
6
+
7
+
8
+ def sanitize_prompt(prompt):
9
+ # Allow only alphanumeric characters, spaces, and basic punctuation
10
+ allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
11
+ sanitized_prompt = allowed_chars.sub("", prompt)
12
+ return sanitized_prompt
13
+
14
+ @spaces.GPU(duration=180)
15
+ def process_images(image, image2=None,prompt="a girl",negative_prompt=None,inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75):
16
+ if negative_prompt == None:
17
+ negative_prompt = ""
18
+ # I'm not sure when this happen
19
+ if not isinstance(image, dict):
20
+ if image2 == None:
21
+ print("empty mask")
22
+ return image
23
+ else:
24
+ image = dict({'background': image, 'layers': [image2]})
25
+
26
+ if image2!=None:
27
+ #print("use image2")
28
+ mask = image2
29
+ else:
30
+ if len(image['layers']) == 0:
31
+ print("empty mask")
32
+ return image
33
+ print("use layer")
34
+ mask = image['layers'][0]
35
+
36
+
37
+ output = flux1_inpaint.process_image(image["background"],mask,prompt,negative_prompt,inpaint_model,strength)
38
+
39
+ return output
40
+
41
+
42
+ def read_file(path: str) -> str:
43
+ with open(path, 'r', encoding='utf-8') as f:
44
+ content = f.read()
45
+
46
+ return content
47
+
48
+ css="""
49
+ #col-left {
50
+ margin: 0 auto;
51
+ max-width: 640px;
52
+ }
53
+ #col-right {
54
+ margin: 0 auto;
55
+ max-width: 640px;
56
+ }
57
+ """
58
+ demo_blocks = gr.Blocks(css=css, elem_id="demo-container")
59
+ with demo_blocks as demo:
60
+ with gr.Column():
61
+ gr.HTML(read_file("demo_header.html"))
62
+ with gr.Row():
63
+ with gr.Column():
64
+ image = gr.ImageEditor(height=1000,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False, elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#999"], color_mode="fixed"))
65
+ with gr.Row(elem_id="prompt-container", equal_height=False):
66
+ with gr.Row():
67
+ prompt = gr.Textbox(label="Prompt",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
68
+
69
+ btn = gr.Button("Inpaint!", elem_id="run_button")
70
+ negative_prompt = gr.Textbox(label="Negative Prompt",placeholder="negative prompt",value="worst quality", elem_id="negative_prompt")
71
+
72
+ image_mask = gr.Image(sources=['upload','clipboard'], elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None)
73
+ with gr.Accordion(label="Advanced Settings", open=False):
74
+ with gr.Row( equal_height=True):
75
+ strength = gr.Number(value=0.8, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength")
76
+ blur_radius = gr.Number(value=25, minimum=0.0, maximum=50.0, step=1, label="Blur Radius")
77
+ edge_expand = gr.Number(value=8, minimum=0.0, maximum=20.0, step=1, label="Edge Expand")
78
+ with gr.Row(equal_height=True):
79
+ models = ["black-forest-labs/FLUX.1-schnell"]
80
+ inpaint_model = gr.Dropdown(label="modes", choices=models, value="stablediffusionapi/bracingevomix-v2")
81
+ with gr.Column():
82
+ image_out = gr.Image(sources=[],label="Output", elem_id="output-img")
83
+
84
+
85
+
86
+ btn.click(fn=process_images, inputs=[image, image_mask,prompt,negative_prompt,inpaint_model,strength], outputs =image_out, api_name='infer')
87
+ gr.Examples(
88
+ examples=[["examples/catman.jpg", "examples/catman_mask.jpg","He's wearing a dog face."]]
89
+ ,
90
+ #fn=predict,
91
+ inputs=[image,image_mask,prompt],
92
+ cache_examples=False,
93
+ )
94
+ gr.HTML(
95
+ """
96
+ <div style="text-align: center;">
97
+ <p>Inpaint Code <a href="https://github.com/opencv/opencv/blob/da3debda6d233af90e421e95700c63fc08b83b75/samples/python/inpaint.py" style="text-decoration: underline;" target="_blank">OpenCV inpaint example</a> - Gradio Demo by 🤗 Hugging Face
98
+ </p>
99
+ </div>
100
+ """
101
+ )
102
+
103
+ demo_blocks.queue(max_size=25).launch(share=False,debug=True)
demo_header.html ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <div style="text-align: center;">
2
+ <h1>
3
+ Inpaint
4
+ </h1>
5
+ <p>
6
+
7
+ </p>
8
+ </div>
flux1_inpaint.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import FluxInpaintPipeline
3
+ from diffusers.utils import load_image
4
+
5
+ from PIL import Image
6
+ import sys
7
+ import numpy as np
8
+
9
+ import json
10
+ import os
11
+ import spaces
12
+
13
+ device = "cuda"
14
+ pipeline_device = 0 if torch.cuda.is_available() else -1 # TODO mix above
15
+ torch_dtype = torch.float16
16
+ debug = True
17
+ @spaces.GPU
18
+ def make_inpaint_condition(image, image_mask):
19
+ image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
20
+ image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
21
+
22
+ if image.shape[0:1] != image_mask.shape[0:1]:
23
+ print("error image and image_mask must have the same image size")
24
+ return None
25
+
26
+ image[image_mask > 0.5] = -1.0 # set as masked pixel
27
+ image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
28
+ image = torch.from_numpy(image)
29
+ return image
30
+
31
+
32
+
33
+
34
+
35
+ @spaces.GPU
36
+ def process_image(image,mask_image,prompt="a girl",negative_prompt="",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
37
+
38
+
39
+
40
+ #control_image=make_inpaint_condition(image,mask_image)
41
+ #image.save("_control.jpg")
42
+ if image == None:
43
+ return None
44
+
45
+ pipe = FluxInpaintPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
46
+
47
+ #batch_size =1
48
+ generators = []
49
+ generator = torch.Generator(device).manual_seed(seed)
50
+ generators.append(generator)
51
+
52
+ output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator)
53
+
54
+ return output.images[0]
55
+
56
+
57
+ if __name__ == "__main__":
58
+ image = Image.open(sys.argv[1])
59
+ mask = Image.open(sys.argv[2])
60
+ output = process_image(image,mask)
61
+ output.save(sys.argv[3])
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ safetensors
2
+ numpy
3
+ torch
4
+ diffusers
5
+ spaces
6
+ accelerate
7
+ transformers