Akjava commited on
Commit
4fd86e6
1 Parent(s): 1779015

support size

Browse files
Files changed (1) hide show
  1. app.py +29 -1
app.py CHANGED
@@ -9,6 +9,27 @@ import os
9
  import numpy as np
10
 
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  dtype = torch.bfloat16
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
 
@@ -57,7 +78,14 @@ def process_images(image, image2=None,prompt="a girl",inpaint_model="black-fores
57
  generator = torch.Generator("cuda").manual_seed(seed)
58
  generators.append(generator)
59
 
60
- output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,
 
 
 
 
 
 
 
61
  guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
62
 
63
  return output.images[0]
 
9
  import numpy as np
10
 
11
 
12
+ def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
13
+ width, height =original_width_and_height
14
+ if width <= maximum_size and height <= maximum_size:
15
+ return width,height
16
+
17
+ if width > height:
18
+ scaling_factor = maximum_size / width
19
+ else:
20
+ scaling_factor = maximum_size / height
21
+
22
+ new_width = int(width * scaling_factor)
23
+ new_height = int(height * scaling_factor)
24
+ return new_width, new_height
25
+
26
+ def adjust_to_multiple_of_32(width: int, height: int):
27
+ width = width - (width % 32)
28
+ height = height - (height % 32)
29
+ return width, height
30
+
31
+
32
+
33
  dtype = torch.bfloat16
34
  device = "cuda" if torch.cuda.is_available() else "cpu"
35
 
 
78
  generator = torch.Generator("cuda").manual_seed(seed)
79
  generators.append(generator)
80
 
81
+ width,height = convert_to_fit_size(image.size)
82
+ print(f"fit {width}x{height}")
83
+ width,height = adjust_to_multiple_of_32(width,height)
84
+ print(f"multiple {width}x{height}")
85
+ image = image.resize((width, height), Image.LANCZOS)
86
+ mask = mask.resize((width, height), Image.NEAREST)
87
+
88
+ output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,width=width,height=height,
89
  guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
90
 
91
  return output.images[0]