Spaces:
Running
on
Zero
Running
on
Zero
support size
Browse files
app.py
CHANGED
@@ -9,6 +9,27 @@ import os
|
|
9 |
import numpy as np
|
10 |
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
dtype = torch.bfloat16
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
@@ -57,7 +78,14 @@ def process_images(image, image2=None,prompt="a girl",inpaint_model="black-fores
|
|
57 |
generator = torch.Generator("cuda").manual_seed(seed)
|
58 |
generators.append(generator)
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
|
62 |
|
63 |
return output.images[0]
|
|
|
9 |
import numpy as np
|
10 |
|
11 |
|
12 |
+
def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
|
13 |
+
width, height =original_width_and_height
|
14 |
+
if width <= maximum_size and height <= maximum_size:
|
15 |
+
return width,height
|
16 |
+
|
17 |
+
if width > height:
|
18 |
+
scaling_factor = maximum_size / width
|
19 |
+
else:
|
20 |
+
scaling_factor = maximum_size / height
|
21 |
+
|
22 |
+
new_width = int(width * scaling_factor)
|
23 |
+
new_height = int(height * scaling_factor)
|
24 |
+
return new_width, new_height
|
25 |
+
|
26 |
+
def adjust_to_multiple_of_32(width: int, height: int):
|
27 |
+
width = width - (width % 32)
|
28 |
+
height = height - (height % 32)
|
29 |
+
return width, height
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
dtype = torch.bfloat16
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
|
|
|
78 |
generator = torch.Generator("cuda").manual_seed(seed)
|
79 |
generators.append(generator)
|
80 |
|
81 |
+
width,height = convert_to_fit_size(image.size)
|
82 |
+
print(f"fit {width}x{height}")
|
83 |
+
width,height = adjust_to_multiple_of_32(width,height)
|
84 |
+
print(f"multiple {width}x{height}")
|
85 |
+
image = image.resize((width, height), Image.LANCZOS)
|
86 |
+
mask = mask.resize((width, height), Image.NEAREST)
|
87 |
+
|
88 |
+
output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,width=width,height=height,
|
89 |
guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
|
90 |
|
91 |
return output.images[0]
|