AkitoP's picture
Upload 182 files
e82212c verified
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
import os
import pdb
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
import argparse
import logging
from pathlib import Path
import torch, platform
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
from pytorch_lightning.strategies import DDPStrategy
from AR.data.data_module import Text2SemanticDataModule
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
torch.set_float32_matmul_precision("high")
from AR.utils import get_newest_ckpt
from collections import OrderedDict
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
dir=os.path.dirname(path)
name=os.path.basename(path)
tmp_path="%s.pth"%(ttime())
torch.save(fea,tmp_path)
shutil.move(tmp_path,"%s/%s"%(dir,name))
class my_model_ckpt(ModelCheckpoint):
def __init__(
self,
config,
if_save_latest,
if_save_every_weights,
half_weights_save_dir,
exp_name,
**kwargs
):
super().__init__(**kwargs)
self.if_save_latest = if_save_latest
self.if_save_every_weights = if_save_every_weights
self.half_weights_save_dir = half_weights_save_dir
self.exp_name = exp_name
self.config = config
def on_train_epoch_end(self, trainer, pl_module):
# if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
if self._should_save_on_train_epoch_end(trainer):
monitor_candidates = self._monitor_candidates(trainer)
if (
self._every_n_epochs >= 1
and (trainer.current_epoch + 1) % self._every_n_epochs == 0
):
if (
self.if_save_latest == True
): ####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
to_clean = list(os.listdir(self.dirpath))
self._save_topk_checkpoint(trainer, monitor_candidates)
if self.if_save_latest == True:
for name in to_clean:
try:
os.remove("%s/%s" % (self.dirpath, name))
except:
pass
if self.if_save_every_weights == True:
to_save_od = OrderedDict()
to_save_od["weight"] = OrderedDict()
dictt = trainer.strategy._lightning_module.state_dict()
for key in dictt:
to_save_od["weight"][key] = dictt[key].half()
to_save_od["config"] = self.config
to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
# torch.save(
# print(os.environ)
if(os.environ.get("LOCAL_RANK","0")=="0"):
my_save(
to_save_od,
"%s/%s-e%s.ckpt"
% (
self.half_weights_save_dir,
self.exp_name,
trainer.current_epoch + 1,
),
)
self._save_last_checkpoint(trainer, monitor_candidates)
def main(args):
config = load_yaml_config(args.config_file)
output_dir = Path(config["output_dir"])
output_dir.mkdir(parents=True, exist_ok=True)
ckpt_dir = output_dir / "ckpt"
ckpt_dir.mkdir(parents=True, exist_ok=True)
seed_everything(config["train"]["seed"], workers=True)
ckpt_callback: ModelCheckpoint = my_model_ckpt(
config=config,
if_save_latest=config["train"]["if_save_latest"],
if_save_every_weights=config["train"]["if_save_every_weights"],
half_weights_save_dir=config["train"]["half_weights_save_dir"],
exp_name=config["train"]["exp_name"],
save_top_k=-1,
monitor="top_3_acc",
mode="max",
save_on_train_epoch_end=True,
every_n_epochs=config["train"]["save_every_n_epoch"],
dirpath=ckpt_dir,
)
logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
os.environ["MASTER_ADDR"]="localhost"
trainer: Trainer = Trainer(
max_epochs=config["train"]["epochs"],
accelerator="gpu" if torch.cuda.is_available() else "cpu",
# val_check_interval=9999999999999999999999,###不要验证
# check_val_every_n_epoch=None,
limit_val_batches=0,
devices=-1 if torch.cuda.is_available() else 1,
benchmark=False,
fast_dev_run=False,
strategy = DDPStrategy(
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
) if torch.cuda.is_available() else "auto",
precision=config["train"]["precision"],
logger=logger,
num_sanity_val_steps=0,
callbacks=[ckpt_callback],
use_distributed_sampler=False, # 非常简单的修改,但解决了采用自定义的 bucket_sampler 下训练步数不一致的问题!
)
model: Text2SemanticLightningModule = Text2SemanticLightningModule(
config, output_dir
)
data_module: Text2SemanticDataModule = Text2SemanticDataModule(
config,
train_semantic_path=config["train_semantic_path"],
train_phoneme_path=config["train_phoneme_path"],
# dev_semantic_path=args.dev_semantic_path,
# dev_phoneme_path=args.dev_phoneme_path
)
try:
# 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
ckpt_path = ckpt_dir / newest_ckpt_name
except Exception:
ckpt_path = None
print("ckpt_path:", ckpt_path)
trainer.fit(model, data_module, ckpt_path=ckpt_path)
# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config_file",
type=str,
default="configs/s1longer.yaml",
help="path of config file",
)
# args for dataset
# parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
# parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
# parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
# parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
# parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
# parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')
args = parser.parse_args()
logging.info(str(args))
main(args)