Spaces:
Running
on
Zero
Running
on
Zero
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py | |
# reference: https://github.com/lifeiteng/vall-e | |
import os, sys | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from typing import Dict | |
import torch | |
from pytorch_lightning import LightningModule | |
from AR.models.t2s_model_onnx import Text2SemanticDecoder | |
from AR.modules.lr_schedulers import WarmupCosineLRSchedule | |
from AR.modules.optim import ScaledAdam | |
class Text2SemanticLightningModule(LightningModule): | |
def __init__(self, config, output_dir, is_train=True): | |
super().__init__() | |
self.config = config | |
self.top_k = 3 | |
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k) | |
pretrained_s1 = config.get("pretrained_s1") | |
if pretrained_s1 and is_train: | |
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"])) | |
print( | |
self.load_state_dict( | |
torch.load(pretrained_s1, map_location="cpu")["weight"] | |
) | |
) | |
if is_train: | |
self.automatic_optimization = False | |
self.save_hyperparameters() | |
self.eval_dir = output_dir / "eval" | |
self.eval_dir.mkdir(parents=True, exist_ok=True) | |
def training_step(self, batch: Dict, batch_idx: int): | |
opt = self.optimizers() | |
scheduler = self.lr_schedulers() | |
loss, acc = self.model.forward( | |
batch["phoneme_ids"], | |
batch["phoneme_ids_len"], | |
batch["semantic_ids"], | |
batch["semantic_ids_len"], | |
batch["bert_feature"], | |
) | |
self.manual_backward(loss) | |
if batch_idx > 0 and batch_idx % 4 == 0: | |
opt.step() | |
opt.zero_grad() | |
scheduler.step() | |
self.log( | |
"total_loss", | |
loss, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=True, | |
sync_dist=True, | |
) | |
self.log( | |
"lr", | |
scheduler.get_last_lr()[0], | |
on_epoch=True, | |
prog_bar=True, | |
sync_dist=True, | |
) | |
self.log( | |
f"top_{self.top_k}_acc", | |
acc, | |
on_step=True, | |
on_epoch=True, | |
prog_bar=True, | |
sync_dist=True, | |
) | |
def validation_step(self, batch: Dict, batch_idx: int): | |
return | |
def configure_optimizers(self): | |
model_parameters = self.model.parameters() | |
parameters_names = [] | |
parameters_names.append( | |
[name_param_pair[0] for name_param_pair in self.model.named_parameters()] | |
) | |
lm_opt = ScaledAdam( | |
model_parameters, | |
lr=0.01, | |
betas=(0.9, 0.95), | |
clipping_scale=2.0, | |
parameters_names=parameters_names, | |
show_dominant_parameters=False, | |
clipping_update_period=1000, | |
) | |
return { | |
"optimizer": lm_opt, | |
"lr_scheduler": { | |
"scheduler": WarmupCosineLRSchedule( | |
lm_opt, | |
init_lr=self.config["optimizer"]["lr_init"], | |
peak_lr=self.config["optimizer"]["lr"], | |
end_lr=self.config["optimizer"]["lr_end"], | |
warmup_steps=self.config["optimizer"]["warmup_steps"], | |
total_steps=self.config["optimizer"]["decay_steps"], | |
) | |
}, | |
} | |