Spaces:
Runtime error
Runtime error
import hashlib | |
import io | |
import json | |
import logging | |
import os | |
import time | |
from pathlib import Path | |
from inference import slicer | |
import gc | |
import librosa | |
import numpy as np | |
# import onnxruntime | |
import parselmouth | |
import soundfile | |
import torch | |
import torchaudio | |
import cluster | |
from hubert import hubert_model | |
import utils | |
from models import SynthesizerTrn | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
def read_temp(file_name): | |
if not os.path.exists(file_name): | |
with open(file_name, "w") as f: | |
f.write(json.dumps({"info": "temp_dict"})) | |
return {} | |
else: | |
try: | |
with open(file_name, "r") as f: | |
data = f.read() | |
data_dict = json.loads(data) | |
if os.path.getsize(file_name) > 50 * 1024 * 1024: | |
f_name = file_name.replace("\\", "/").split("/")[-1] | |
print(f"clean {f_name}") | |
for wav_hash in list(data_dict.keys()): | |
if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600: | |
del data_dict[wav_hash] | |
except Exception as e: | |
print(e) | |
print(f"{file_name} error,auto rebuild file") | |
data_dict = {"info": "temp_dict"} | |
return data_dict | |
def write_temp(file_name, data): | |
with open(file_name, "w") as f: | |
f.write(json.dumps(data)) | |
def timeit(func): | |
def run(*args, **kwargs): | |
t = time.time() | |
res = func(*args, **kwargs) | |
print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) | |
return res | |
return run | |
def format_wav(audio_path): | |
if Path(audio_path).suffix == '.wav': | |
return | |
raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None) | |
soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate) | |
def get_end_file(dir_path, end): | |
file_lists = [] | |
for root, dirs, files in os.walk(dir_path): | |
files = [f for f in files if f[0] != '.'] | |
dirs[:] = [d for d in dirs if d[0] != '.'] | |
for f_file in files: | |
if f_file.endswith(end): | |
file_lists.append(os.path.join(root, f_file).replace("\\", "/")) | |
return file_lists | |
def get_md5(content): | |
return hashlib.new("md5", content).hexdigest() | |
def fill_a_to_b(a, b): | |
if len(a) < len(b): | |
for _ in range(0, len(b) - len(a)): | |
a.append(a[0]) | |
def mkdir(paths: list): | |
for path in paths: | |
if not os.path.exists(path): | |
os.mkdir(path) | |
def pad_array(arr, target_length): | |
current_length = arr.shape[0] | |
if current_length >= target_length: | |
return arr | |
else: | |
pad_width = target_length - current_length | |
pad_left = pad_width // 2 | |
pad_right = pad_width - pad_left | |
padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0)) | |
return padded_arr | |
def split_list_by_n(list_collection, n, pre=0): | |
for i in range(0, len(list_collection), n): | |
yield list_collection[i-pre if i-pre>=0 else i: i + n] | |
class F0FilterException(Exception): | |
pass | |
class Svc(object): | |
def __init__(self, net_g_path, config_path, | |
device=None, | |
cluster_model_path="logs/44k/kmeans_10000.pt", | |
nsf_hifigan_enhance = False | |
): | |
self.net_g_path = net_g_path | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
self.net_g_ms = None | |
self.hps_ms = utils.get_hparams_from_file(config_path) | |
self.target_sample = self.hps_ms.data.sampling_rate | |
self.hop_size = self.hps_ms.data.hop_length | |
self.spk2id = self.hps_ms.spk | |
self.nsf_hifigan_enhance = nsf_hifigan_enhance | |
# load hubert | |
self.hubert_model = utils.get_hubert_model().to(self.dev) | |
self.load_model() | |
if os.path.exists(cluster_model_path): | |
self.cluster_model = cluster.get_cluster_model(cluster_model_path) | |
if self.nsf_hifigan_enhance: | |
from modules.enhancer import Enhancer | |
self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev) | |
def load_model(self): | |
# get model configuration | |
self.net_g_ms = SynthesizerTrn( | |
self.hps_ms.data.filter_length // 2 + 1, | |
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, | |
**self.hps_ms.model) | |
_ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None) | |
if "half" in self.net_g_path and torch.cuda.is_available(): | |
_ = self.net_g_ms.half().eval().to(self.dev) | |
else: | |
_ = self.net_g_ms.eval().to(self.dev) | |
def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker, f0_filter ,F0_mean_pooling,cr_threshold=0.05): | |
wav, sr = librosa.load(in_path, sr=self.target_sample) | |
if F0_mean_pooling == True: | |
f0, uv = utils.compute_f0_uv_torchcrepe(torch.FloatTensor(wav), sampling_rate=self.target_sample, hop_length=self.hop_size,device=self.dev,cr_threshold = cr_threshold) | |
if f0_filter and sum(f0) == 0: | |
raise F0FilterException("No voice detected") | |
f0 = torch.FloatTensor(list(f0)) | |
uv = torch.FloatTensor(list(uv)) | |
if F0_mean_pooling == False: | |
f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size) | |
if f0_filter and sum(f0) == 0: | |
raise F0FilterException("No voice detected") | |
f0, uv = utils.interpolate_f0(f0) | |
f0 = torch.FloatTensor(f0) | |
uv = torch.FloatTensor(uv) | |
f0 = f0 * 2 ** (tran / 12) | |
f0 = f0.unsqueeze(0).to(self.dev) | |
uv = uv.unsqueeze(0).to(self.dev) | |
wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000) | |
wav16k = torch.from_numpy(wav16k).to(self.dev) | |
c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k) | |
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1]) | |
if cluster_infer_ratio !=0: | |
cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T | |
cluster_c = torch.FloatTensor(cluster_c).to(self.dev) | |
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c | |
c = c.unsqueeze(0) | |
return c, f0, uv | |
def infer(self, speaker, tran, raw_path, | |
cluster_infer_ratio=0, | |
auto_predict_f0=False, | |
noice_scale=0.4, | |
f0_filter=False, | |
F0_mean_pooling=False, | |
enhancer_adaptive_key = 0, | |
cr_threshold = 0.05 | |
): | |
speaker_id = self.spk2id.__dict__.get(speaker) | |
if not speaker_id and type(speaker) is int: | |
if len(self.spk2id.__dict__) >= speaker: | |
speaker_id = speaker | |
sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0) | |
c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker, f0_filter,F0_mean_pooling,cr_threshold=cr_threshold) | |
if "half" in self.net_g_path and torch.cuda.is_available(): | |
c = c.half() | |
with torch.no_grad(): | |
start = time.time() | |
audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float() | |
if self.nsf_hifigan_enhance: | |
audio, _ = self.enhancer.enhance( | |
audio[None,:], | |
self.target_sample, | |
f0[:,:,None], | |
self.hps_ms.data.hop_length, | |
adaptive_key = enhancer_adaptive_key) | |
use_time = time.time() - start | |
print("vits use time:{}".format(use_time)) | |
return audio, audio.shape[-1] | |
def clear_empty(self): | |
# clean up vram | |
torch.cuda.empty_cache() | |
def unload_model(self): | |
# unload model | |
self.net_g_ms = self.net_g_ms.to("cpu") | |
del self.net_g_ms | |
if hasattr(self,"enhancer"): | |
self.enhancer.enhancer = self.enhancer.enhancer.to("cpu") | |
del self.enhancer.enhancer | |
del self.enhancer | |
gc.collect() | |
def slice_inference(self, | |
raw_audio_path, | |
spk, | |
tran, | |
slice_db, | |
cluster_infer_ratio, | |
auto_predict_f0, | |
noice_scale, | |
pad_seconds=0.5, | |
clip_seconds=0, | |
lg_num=0, | |
lgr_num =0.75, | |
F0_mean_pooling = False, | |
enhancer_adaptive_key = 0, | |
cr_threshold = 0.05 | |
): | |
wav_path = raw_audio_path | |
chunks = slicer.cut(wav_path, db_thresh=slice_db) | |
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) | |
per_size = int(clip_seconds*audio_sr) | |
lg_size = int(lg_num*audio_sr) | |
lg_size_r = int(lg_size*lgr_num) | |
lg_size_c_l = (lg_size-lg_size_r)//2 | |
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l | |
lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0 | |
audio = [] | |
for (slice_tag, data) in audio_data: | |
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') | |
# padd | |
length = int(np.ceil(len(data) / audio_sr * self.target_sample)) | |
if slice_tag: | |
print('jump empty segment') | |
_audio = np.zeros(length) | |
audio.extend(list(pad_array(_audio, length))) | |
continue | |
if per_size != 0: | |
datas = split_list_by_n(data, per_size,lg_size) | |
else: | |
datas = [data] | |
for k,dat in enumerate(datas): | |
per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length | |
if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======') | |
# padd | |
pad_len = int(audio_sr * pad_seconds) | |
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])]) | |
raw_path = io.BytesIO() | |
soundfile.write(raw_path, dat, audio_sr, format="wav") | |
raw_path.seek(0) | |
out_audio, out_sr = self.infer(spk, tran, raw_path, | |
cluster_infer_ratio=cluster_infer_ratio, | |
auto_predict_f0=auto_predict_f0, | |
noice_scale=noice_scale, | |
F0_mean_pooling = F0_mean_pooling, | |
enhancer_adaptive_key = enhancer_adaptive_key, | |
cr_threshold = cr_threshold | |
) | |
_audio = out_audio.cpu().numpy() | |
pad_len = int(self.target_sample * pad_seconds) | |
_audio = _audio[pad_len:-pad_len] | |
_audio = pad_array(_audio, per_length) | |
if lg_size!=0 and k!=0: | |
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:] | |
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size] | |
lg_pre = lg1*(1-lg)+lg2*lg | |
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size] | |
audio.extend(lg_pre) | |
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:] | |
audio.extend(list(_audio)) | |
return np.array(audio) | |
class RealTimeVC: | |
def __init__(self): | |
self.last_chunk = None | |
self.last_o = None | |
self.chunk_len = 16000 # chunk length | |
self.pre_len = 3840 # cross fade length, multiples of 640 | |
# Input and output are 1-dimensional numpy waveform arrays | |
def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path, | |
cluster_infer_ratio=0, | |
auto_predict_f0=False, | |
noice_scale=0.4, | |
f0_filter=False): | |
import maad | |
audio, sr = torchaudio.load(input_wav_path) | |
audio = audio.cpu().numpy()[0] | |
temp_wav = io.BytesIO() | |
if self.last_chunk is None: | |
input_wav_path.seek(0) | |
audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path, | |
cluster_infer_ratio=cluster_infer_ratio, | |
auto_predict_f0=auto_predict_f0, | |
noice_scale=noice_scale, | |
f0_filter=f0_filter) | |
audio = audio.cpu().numpy() | |
self.last_chunk = audio[-self.pre_len:] | |
self.last_o = audio | |
return audio[-self.chunk_len:] | |
else: | |
audio = np.concatenate([self.last_chunk, audio]) | |
soundfile.write(temp_wav, audio, sr, format="wav") | |
temp_wav.seek(0) | |
audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav, | |
cluster_infer_ratio=cluster_infer_ratio, | |
auto_predict_f0=auto_predict_f0, | |
noice_scale=noice_scale, | |
f0_filter=f0_filter) | |
audio = audio.cpu().numpy() | |
ret = maad.util.crossfade(self.last_o, audio, self.pre_len) | |
self.last_chunk = audio[-self.pre_len:] | |
self.last_o = audio | |
return ret[self.chunk_len:2 * self.chunk_len] | |