AkhilPJ commited on
Commit
c715253
·
1 Parent(s): 7a3a9f5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +237 -0
app.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ fashion_mnist = keras.datasets.fashion_mnist
2
+ (x_train_full, y_train_full), (x_test, y_test) = fashion_mnist.load_data()
3
+
4
+ x_valid, x_train = x_train_full[:5000], x_train_full[5000:]
5
+ y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
6
+
7
+ x_train.shape
8
+ import matplotlib as mpl
9
+ import matplotlib.pyplot as plt
10
+ plt.figure(figsize=(14,12))
11
+
12
+ plt.subplot(3,3,1)
13
+ some_image = x_train[0]
14
+ plt.imshow(some_image, cmap=mpl.cm.binary)
15
+
16
+ plt.subplot(3,3,2)
17
+ some_image = x_train[1]
18
+ plt.imshow(some_image, cmap=mpl.cm.binary)
19
+
20
+ plt.subplot(3,3,3)
21
+ some_image = x_train[2]
22
+ plt.imshow(some_image, cmap=mpl.cm.binary)
23
+
24
+ plt.subplot(3,3,4)
25
+ some_image = x_train[3]
26
+ plt.imshow(some_image, cmap=mpl.cm.binary)
27
+
28
+ plt.subplot(3,3,5)
29
+ some_image = x_train[4]
30
+ plt.imshow(some_image, cmap=mpl.cm.binary)
31
+
32
+ plt.subplot(3,3,6)
33
+ some_image = x_train[5]
34
+ plt.imshow(some_image, cmap=mpl.cm.binary)
35
+
36
+ plt.subplot(3,3,7)
37
+ some_image = x_train[6]
38
+ plt.imshow(some_image, cmap=mpl.cm.binary)
39
+
40
+ plt.subplot(3,3,8)
41
+ some_image = x_train[7]
42
+ plt.imshow(some_image, cmap=mpl.cm.binary)
43
+
44
+ plt.subplot(3,3,9)
45
+ some_image = x_train[8]
46
+ plt.imshow(some_image, cmap=mpl.cm.binary)
47
+
48
+ plt.show()
49
+
50
+ class_names = ["T-shirt/top","Trouser","Pullover", "Dress","Coat","Sandals","Shirt","Sneaker","Bag","Ankle boot"]
51
+ class_names[y_train[3]]
52
+
53
+ pd_y_train = pd.DataFrame(y_train)
54
+
55
+ frequency = pd_y_train.value_counts()
56
+ category = frequency.index.tolist()
57
+ counts = frequency.values.tolist()
58
+ # Visualization of train set
59
+ frequency.plot(kind='bar')
60
+ plt.title ('Bar plot')
61
+ plt.xlabel ('Category')
62
+ plt.ylabel ('Frequency')
63
+
64
+ img_shape = x_train.shape
65
+ n_samples = img_shape[0]
66
+ width = img_shape[1]
67
+ height = img_shape[2]
68
+
69
+ print("n_samples: ",n_samples)
70
+ print("width: ",width)
71
+ print("height: ",height)
72
+
73
+ #flatten each 2d mnist image into 1d array and checing dimensions
74
+ x_train_flatten = x_train.reshape(n_samples, width*height)
75
+ print("x_train_flatten.shape: ",x_train_flatten.shape)
76
+ from sklearn.preprocessing import StandardScaler
77
+ from sklearn.neighbors import KNeighborsClassifier
78
+
79
+ # feature scaling
80
+ standardscaler = StandardScaler()
81
+ X_train_scale = standardscaler.fit_transform(x_train_flatten)
82
+
83
+ # import KNN classifier from sklearn
84
+ KNN_classifier_scale = KNeighborsClassifier(n_neighbors=5)
85
+ KNN_classifier_scale. fit(X_train_scale,y_train)
86
+
87
+ X_test_stand = standardscaler.transform(x_test_flatten)
88
+ y_pred = KNN_classifier_scale.predict(X_test_stand)
89
+ # Cross validation
90
+ from sklearn.model_selection import cross_val_score
91
+ from sklearn.neighbors import KNeighborsClassifier
92
+
93
+ # define one KNN model
94
+ KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean')
95
+
96
+ # call cross-val_score
97
+ CV_scores = cross_val_score(estimator = KNN_classifier, X = x_train_flatten, y = y_train, cv = 3, scoring = 'accuracy')
98
+ print("CV_scores: ", CV_scores)
99
+ # Training
100
+
101
+ from sklearn.model_selection import cross_val_score
102
+ from sklearn.neighbors import KNeighborsClassifier
103
+
104
+ import time
105
+ start = time.time()
106
+
107
+ KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean')
108
+ KNN_classifier.fit(x_train_flatten, y_train)
109
+ y_valid_predicted_label = KNN_classifier.predict(x_valid_flatten)
110
+
111
+ end = time.time()
112
+ time_duration = end-start
113
+ print("Program finishes in {} seconds:".format(time_duration))
114
+ # Saving the data
115
+ from joblib import dump, load
116
+ dump(KNN_classifier, 'KNN_fashionmnist.joblib')
117
+ # loading the data
118
+ KNN_classifier = load('KNN_fashionmnist.joblib')
119
+
120
+ # organize the predicted classes and actual classes into Pandas dataframe
121
+ summary = pd.DataFrame({'predection':y_valid_predicted_label,'Original':y_valid})
122
+ summary
123
+
124
+ # Overall accuracy of the validation predictions
125
+ from sklearn import metrics
126
+ metrics.accuracy_score(y_valid,y_valid_predicted_label)
127
+
128
+ # Calculate the per-class accuracy of the predictions
129
+ from sklearn.metrics import confusion_matrix
130
+ matrix = confusion_matrix(y_valid,y_valid_predicted_label)
131
+ accuracy_score = matrix.diagonal()/matrix.sum(axis=1)
132
+
133
+ print('accuracy of t-shirt is',accuracy_score[0])
134
+ print('accuracy of Trouser is',accuracy_score[1])
135
+ print('accuracy of pullover is',accuracy_score[2])
136
+ print('accuracy of Dress is',accuracy_score[3])
137
+ print('accuracy of coat is',accuracy_score[4])
138
+ print('accuracy of sandal is',accuracy_score[5])
139
+ print('accuracy of shirt is',accuracy_score[6])
140
+ print('accuracy of sneaker is',accuracy_score[7])
141
+ print('accuracy of bag is',accuracy_score[8])
142
+ print('accuracy of boot is',accuracy_score[9])
143
+
144
+ # visualize the classification confusion matrix to check the details of the validation predictions for each class
145
+ import matplotlib.pyplot as plt
146
+ from sklearn.metrics import ConfusionMatrixDisplay
147
+ ConfusionMatrixDisplay.from_predictions(y_valid, y_valid_predicted_label)
148
+ plt.title("Classification Confusion matrix")
149
+ plt.show()
150
+
151
+ # Task 4.1.9 Different K values, and select the best model that has highest validation accuracy
152
+ # visualize the classification confusion matrix on the test set to report the details of predictions over every class
153
+ from sklearn.neighbors import KNeighborsClassifier
154
+ KNN_classifier = KNeighborsClassifier(n_neighbors=3, metric = 'euclidean')
155
+ KNN_classifier.fit(x_train_flatten, y_train)
156
+ y_valid_predicted_label = KNN_classifier.predict(x_valid_flatten)
157
+
158
+ y_valid_predicted_label
159
+ from sklearn import metrics
160
+ metrics.accuracy_score(y_valid, y_valid_predicted_label)
161
+
162
+ import matplotlib.pyplot as plt
163
+ from sklearn.metrics import ConfusionMatrixDisplay
164
+ ConfusionMatrixDisplay.from_predictions(y_test, y_test_pred)
165
+ plt.title("classifiaction confusion matrix")
166
+ plt.show()
167
+ # Task 4.1.10: Calculate the overall accuracy of the predictions over validation set and test set using the best model
168
+ from sklearn import metrics
169
+ metrics.accuracy_score(y_test, y_test_pred)
170
+ # discriminant analysis
171
+ import numpy as np
172
+ from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
173
+ clf = LinearDiscriminantAnalysis()
174
+ clf.fit(x_train_flatten, y_train)
175
+
176
+ start = time.time()
177
+ predicted_labels = clf.predict(x_valid_flatten)
178
+ end = time.time()
179
+ time_duration = end-start
180
+ print("Program finishes in {} seconds:".format(time_duration))
181
+
182
+ y_test_pred = clf.predict(x_test_flatten)
183
+ print("Accuracy of testing Set: ", metrics.accuracy_score(y_test, y_test_pred))
184
+ y_valid_pred = clf.predict(x_valid_flatten)
185
+ print("Accuracy of validation Set: ", metrics.accuracy_score(y_valid, y_valid_pred))
186
+
187
+ from sklearn.metrics import confusion_matrix
188
+ matrix = confusion_matrix(y_test,y_test_pred)
189
+ accuracy_score = matrix.diagonal()/matrix.sum(axis=1)
190
+
191
+ print('accuracy of t-shirt is',accuracy_score[0])
192
+ print('accuracy of Trouser is',accuracy_score[1])
193
+ print('accuracy of pullover is',accuracy_score[2])
194
+ print('accuracy of Dress is',accuracy_score[3])
195
+ print('accuracy of coat is',accuracy_score[4])
196
+ print('accuracy of sandal is',accuracy_score[5])
197
+ print('accuracy of shirt is',accuracy_score[6])
198
+ print('accuracy of sneaker is',accuracy_score[7])
199
+ print('accuracy of bag is',accuracy_score[8])
200
+ print('accuracy of boot is',accuracy_score[9])
201
+
202
+ from gradio.outputs import Label
203
+ import gradio as gr
204
+ import cv2
205
+ import tensorflow as tf
206
+
207
+ def caption(image,input_module1):
208
+ class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
209
+ "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
210
+ image=image.reshape(1,28*28)
211
+ if input_module1=="KNN":
212
+ output1=KNN_classifier.predict(image)[0]
213
+ predictions=KNN_classifier.predict_proba(image)[0]
214
+
215
+ elif input_module1==("Linear discriminant analysis"):
216
+ output1=clf.predict(image)[0]
217
+ predictions=clf.predict_proba(image)[0]
218
+
219
+ elif input_module1==("Quadratic discriminant analysis"):
220
+ output1=qda.predict(image)[0]
221
+ predictions=qda.predict_proba(image)[0]
222
+
223
+ elif input_module1=="Naive Bayes classifier":
224
+ output1=gnb.predict(image)[0]
225
+ predictions=gnb.predict_proba(image)[0]
226
+
227
+ output2 = {}
228
+
229
+ for i in range(len(predictions)):
230
+ output2[class_names[i]] = predictions[i]
231
+ return output1 ,output2
232
+
233
+ input_module = gr.inputs.Image(label = "Input Image",image_mode="L",shape=(28,28))
234
+ input_module1 = gr.inputs.Dropdown(choices=["KNN","Linear discriminant analysis", "Quadratic discriminant analysis","Naive Bayes classifier"], label = "Method")
235
+ output1 = gr.outputs.Textbox(label = "Predicted Class")
236
+ output2=gr.outputs.Label(label= "probability of class")
237
+ gr.Interface(fn=caption, inputs=[input_module,input_module1], outputs=[output1,output2]).launch(debug=True)