question-gen-en / app.py
Akbartus's picture
Update app.py
4c5de82 verified
raw
history blame
1.76 kB
import gradio as gr
import random
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from question_generation import question_generation_sampling
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
g1_tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
g1_model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer")
g2_tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-race-Distractor")
g2_model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-race-Distractor")
g1_model.eval()
g2_model.eval()
g1_model.to(device)
g2_model.to(device)
def generate_multiple_choice_question(
context
):
num_questions = 1
question_item = question_generation_sampling(
g1_model, g1_tokenizer,
g2_model, g2_tokenizer,
context, num_questions, device
)[0]
question = question_item['question']
options = question_item['options']
options[0] = f"{options[0]} [ANSWER]"
random.shuffle(options)
output_string = f"Question: {question}\n[A] {options[0]}\n[B] {options[1]}\n[C] {options[2]}\n[D] {options[3]}"
return output_string
demo = gr.Interface(
fn=generate_multiple_choice_question,
inputs=gr.Textbox(lines=8, placeholder="Context Here..."),
outputs=gr.Textbox(lines=5, placeholder="Question: \n[A] \n[B] \n[C] \n[D] "),
title="Multiple-choice Question Generator",
description="Provide some context (e.g. news article or any passage) in the context box and click **Submit**. The models currently support English only. This demo is a part of MQAG - https://github.com/potsawee/mqag0.",
allow_flagging='never'
)
demo.launch()