Akbartus commited on
Commit
4cf8def
·
verified ·
1 Parent(s): 34341e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -60
app.py CHANGED
@@ -14,6 +14,7 @@ from gradio_imageslider import ImageSlider
14
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
 
 
17
  def enable_lora(lora_add, basemodel):
18
  return basemodel if not lora_add else lora_add
19
 
@@ -24,41 +25,19 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
24
  seed = int(seed)
25
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
26
  client = AsyncInferenceClient()
27
- image = await client.text_to_image(
28
- prompt=text,
29
- height=height,
30
- width=width,
31
- guidance_scale=scales,
32
- num_inference_steps=steps,
33
- model=model
34
- )
35
  return image, seed
36
  except Exception as e:
37
- print(f"Error generating image: {e}")
38
  return None, None
39
 
40
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
41
  try:
42
  client = Client("finegrain/finegrain-image-enhancer")
43
- result = client.predict(
44
- input_image=handle_file(img_path),
45
- prompt=prompt,
46
- negative_prompt="",
47
- seed=42,
48
- upscale_factor=upscale_factor,
49
- controlnet_scale=0.6,
50
- controlnet_decay=1,
51
- condition_scale=6,
52
- tile_width=112,
53
- tile_height=144,
54
- denoise_strength=0.35,
55
- num_inference_steps=18,
56
- solver="DDIM",
57
- api_name="/process"
58
- )
59
  return result[1]
60
  except Exception as e:
61
- print(f"Error scaling image: {e}")
62
  return None
63
 
64
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
@@ -82,10 +61,6 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
82
  else:
83
  return [image_path, image_path]
84
 
85
- # Helper to run async functions synchronously
86
- def run_async(fn, *args, **kwargs):
87
- return asyncio.run(fn(*args, **kwargs))
88
-
89
  css = """
90
  #col-container{ margin: 0 auto; max-width: 1024px;}
91
  """
@@ -97,27 +72,8 @@ with gr.Blocks(css=css) as demo:
97
  output_res = ImageSlider(label="Flux / Upscaled")
98
  with gr.Column(scale=2):
99
  prompt = gr.Textbox(label="Image Description")
100
- basemodel_choice = gr.Dropdown(
101
- label="Model",
102
- choices=[
103
- "black-forest-labs/FLUX.1-schnell",
104
- "black-forest-labs/FLUX.1-DEV",
105
- "enhanceaiteam/Flux-uncensored",
106
- "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
107
- "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
108
- "city96/FLUX.1-dev-gguf"
109
- ],
110
- value="black-forest-labs/FLUX.1-schnell"
111
- )
112
- lora_model_choice = gr.Dropdown(
113
- label="LoRA",
114
- choices=[
115
- "Shakker-Labs/FLUX.1-dev-LoRA-add-details",
116
- "XLabs-AI/flux-RealismLora",
117
- "enhanceaiteam/Flux-uncensored"
118
- ],
119
- value="XLabs-AI/flux-RealismLora"
120
- )
121
  process_lora = gr.Checkbox(label="LoRA Process")
122
  process_upscale = gr.Checkbox(label="Scale Process")
123
  upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
@@ -130,12 +86,5 @@ with gr.Blocks(css=css) as demo:
130
  seed = gr.Number(label="Seed", value=-1)
131
 
132
  btn = gr.Button("Generate")
133
- btn.click(
134
- fn=lambda *inputs: run_async(gen, *inputs),
135
- inputs=[
136
- prompt, basemodel_choice, width, height, scales, steps, seed,
137
- upscale_factor, process_upscale, lora_model_choice, process_lora
138
- ],
139
- outputs=output_res
140
- )
141
- demo.launch()
 
14
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
 
17
+
18
  def enable_lora(lora_add, basemodel):
19
  return basemodel if not lora_add else lora_add
20
 
 
25
  seed = int(seed)
26
  text = str(Translator().translate(prompt, 'English')) + "," + lora_word
27
  client = AsyncInferenceClient()
28
+ image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
 
 
 
 
 
 
 
29
  return image, seed
30
  except Exception as e:
31
+ print(f"Error generando imagen: {e}")
32
  return None, None
33
 
34
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
35
  try:
36
  client = Client("finegrain/finegrain-image-enhancer")
37
+ result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  return result[1]
39
  except Exception as e:
40
+ print(f"Error escalando imagen: {e}")
41
  return None
42
 
43
  async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
 
61
  else:
62
  return [image_path, image_path]
63
 
 
 
 
 
64
  css = """
65
  #col-container{ margin: 0 auto; max-width: 1024px;}
66
  """
 
72
  output_res = ImageSlider(label="Flux / Upscaled")
73
  with gr.Column(scale=2):
74
  prompt = gr.Textbox(label="Image Description")
75
+ basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
76
+ lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  process_lora = gr.Checkbox(label="LoRA Process")
78
  process_upscale = gr.Checkbox(label="Scale Process")
79
  upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
 
86
  seed = gr.Number(label="Seed", value=-1)
87
 
88
  btn = gr.Button("Generate")
89
+ btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
90
+ demo.launch()