Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from gradio_imageslider import ImageSlider
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
|
|
17 |
def enable_lora(lora_add, basemodel):
|
18 |
return basemodel if not lora_add else lora_add
|
19 |
|
@@ -24,41 +25,19 @@ async def generate_image(prompt, model, lora_word, width, height, scales, steps,
|
|
24 |
seed = int(seed)
|
25 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
26 |
client = AsyncInferenceClient()
|
27 |
-
image = await client.text_to_image(
|
28 |
-
prompt=text,
|
29 |
-
height=height,
|
30 |
-
width=width,
|
31 |
-
guidance_scale=scales,
|
32 |
-
num_inference_steps=steps,
|
33 |
-
model=model
|
34 |
-
)
|
35 |
return image, seed
|
36 |
except Exception as e:
|
37 |
-
print(f"Error
|
38 |
return None, None
|
39 |
|
40 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
41 |
try:
|
42 |
client = Client("finegrain/finegrain-image-enhancer")
|
43 |
-
result = client.predict(
|
44 |
-
input_image=handle_file(img_path),
|
45 |
-
prompt=prompt,
|
46 |
-
negative_prompt="",
|
47 |
-
seed=42,
|
48 |
-
upscale_factor=upscale_factor,
|
49 |
-
controlnet_scale=0.6,
|
50 |
-
controlnet_decay=1,
|
51 |
-
condition_scale=6,
|
52 |
-
tile_width=112,
|
53 |
-
tile_height=144,
|
54 |
-
denoise_strength=0.35,
|
55 |
-
num_inference_steps=18,
|
56 |
-
solver="DDIM",
|
57 |
-
api_name="/process"
|
58 |
-
)
|
59 |
return result[1]
|
60 |
except Exception as e:
|
61 |
-
print(f"Error
|
62 |
return None
|
63 |
|
64 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
@@ -82,10 +61,6 @@ async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_fac
|
|
82 |
else:
|
83 |
return [image_path, image_path]
|
84 |
|
85 |
-
# Helper to run async functions synchronously
|
86 |
-
def run_async(fn, *args, **kwargs):
|
87 |
-
return asyncio.run(fn(*args, **kwargs))
|
88 |
-
|
89 |
css = """
|
90 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
91 |
"""
|
@@ -97,27 +72,8 @@ with gr.Blocks(css=css) as demo:
|
|
97 |
output_res = ImageSlider(label="Flux / Upscaled")
|
98 |
with gr.Column(scale=2):
|
99 |
prompt = gr.Textbox(label="Image Description")
|
100 |
-
basemodel_choice = gr.Dropdown(
|
101 |
-
|
102 |
-
choices=[
|
103 |
-
"black-forest-labs/FLUX.1-schnell",
|
104 |
-
"black-forest-labs/FLUX.1-DEV",
|
105 |
-
"enhanceaiteam/Flux-uncensored",
|
106 |
-
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
107 |
-
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
108 |
-
"city96/FLUX.1-dev-gguf"
|
109 |
-
],
|
110 |
-
value="black-forest-labs/FLUX.1-schnell"
|
111 |
-
)
|
112 |
-
lora_model_choice = gr.Dropdown(
|
113 |
-
label="LoRA",
|
114 |
-
choices=[
|
115 |
-
"Shakker-Labs/FLUX.1-dev-LoRA-add-details",
|
116 |
-
"XLabs-AI/flux-RealismLora",
|
117 |
-
"enhanceaiteam/Flux-uncensored"
|
118 |
-
],
|
119 |
-
value="XLabs-AI/flux-RealismLora"
|
120 |
-
)
|
121 |
process_lora = gr.Checkbox(label="LoRA Process")
|
122 |
process_upscale = gr.Checkbox(label="Scale Process")
|
123 |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
|
@@ -130,12 +86,5 @@ with gr.Blocks(css=css) as demo:
|
|
130 |
seed = gr.Number(label="Seed", value=-1)
|
131 |
|
132 |
btn = gr.Button("Generate")
|
133 |
-
btn.click(
|
134 |
-
|
135 |
-
inputs=[
|
136 |
-
prompt, basemodel_choice, width, height, scales, steps, seed,
|
137 |
-
upscale_factor, process_upscale, lora_model_choice, process_lora
|
138 |
-
],
|
139 |
-
outputs=output_res
|
140 |
-
)
|
141 |
-
demo.launch()
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
|
17 |
+
|
18 |
def enable_lora(lora_add, basemodel):
|
19 |
return basemodel if not lora_add else lora_add
|
20 |
|
|
|
25 |
seed = int(seed)
|
26 |
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
|
27 |
client = AsyncInferenceClient()
|
28 |
+
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return image, seed
|
30 |
except Exception as e:
|
31 |
+
print(f"Error generando imagen: {e}")
|
32 |
return None, None
|
33 |
|
34 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
35 |
try:
|
36 |
client = Client("finegrain/finegrain-image-enhancer")
|
37 |
+
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
return result[1]
|
39 |
except Exception as e:
|
40 |
+
print(f"Error escalando imagen: {e}")
|
41 |
return None
|
42 |
|
43 |
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora):
|
|
|
61 |
else:
|
62 |
return [image_path, image_path]
|
63 |
|
|
|
|
|
|
|
|
|
64 |
css = """
|
65 |
#col-container{ margin: 0 auto; max-width: 1024px;}
|
66 |
"""
|
|
|
72 |
output_res = ImageSlider(label="Flux / Upscaled")
|
73 |
with gr.Column(scale=2):
|
74 |
prompt = gr.Textbox(label="Image Description")
|
75 |
+
basemodel_choice = gr.Dropdown(label="Model", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV", "enhanceaiteam/Flux-uncensored", "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "Shakker-Labs/FLUX.1-dev-LoRA-add-details", "city96/FLUX.1-dev-gguf"], value="black-forest-labs/FLUX.1-schnell")
|
76 |
+
lora_model_choice = gr.Dropdown(label="LoRA", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora", "enhanceaiteam/Flux-uncensored"], value="XLabs-AI/flux-RealismLora")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
process_lora = gr.Checkbox(label="LoRA Process")
|
78 |
process_upscale = gr.Checkbox(label="Scale Process")
|
79 |
upscale_factor = gr.Radio(label="Scaling Factor", choices=[2, 4, 8], value=2)
|
|
|
86 |
seed = gr.Number(label="Seed", value=-1)
|
87 |
|
88 |
btn = gr.Button("Generate")
|
89 |
+
btn.click(fn=gen, inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora], outputs=output_res,)
|
90 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|