Spaces:
Running
Running
| import os | |
| import numpy as np | |
| os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache' | |
| import shutil | |
| import warnings | |
| import argparse | |
| import torch | |
| import yaml | |
| warnings.simplefilter('ignore') | |
| # load packages | |
| import random | |
| from modules.commons import * | |
| import time | |
| import torchaudio | |
| import librosa | |
| from modules.commons import str2bool | |
| from hf_utils import load_custom_model_from_hf | |
| # Load model and configuration | |
| # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| elif torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| else: | |
| device = torch.device("cpu") | |
| fp16 = False | |
| def load_models(args): | |
| global fp16 | |
| fp16 = args.fp16 | |
| if not args.f0_condition: | |
| if args.checkpoint is None: | |
| dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", | |
| "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", | |
| "config_dit_mel_seed_uvit_whisper_small_wavenet.yml") | |
| else: | |
| dit_checkpoint_path = args.checkpoint | |
| dit_config_path = args.config | |
| f0_fn = None | |
| else: | |
| if args.checkpoint is None: | |
| dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", | |
| "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema_v2.pth", | |
| "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml") | |
| else: | |
| dit_checkpoint_path = args.checkpoint | |
| dit_config_path = args.config | |
| # f0 extractor | |
| from modules.rmvpe import RMVPE | |
| model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) | |
| f0_extractor = RMVPE(model_path, is_half=False, device=device) | |
| f0_fn = f0_extractor.infer_from_audio | |
| config = yaml.safe_load(open(dit_config_path, "r")) | |
| model_params = recursive_munch(config["model_params"]) | |
| model_params.dit_type = 'DiT' | |
| model = build_model(model_params, stage="DiT") | |
| hop_length = config["preprocess_params"]["spect_params"]["hop_length"] | |
| sr = config["preprocess_params"]["sr"] | |
| # Load checkpoints | |
| model, _, _, _ = load_checkpoint( | |
| model, | |
| None, | |
| dit_checkpoint_path, | |
| load_only_params=True, | |
| ignore_modules=[], | |
| is_distributed=False, | |
| ) | |
| for key in model: | |
| model[key].eval() | |
| model[key].to(device) | |
| model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) | |
| # Load additional modules | |
| from modules.campplus.DTDNN import CAMPPlus | |
| campplus_ckpt_path = load_custom_model_from_hf( | |
| "funasr/campplus", "campplus_cn_common.bin", config_filename=None | |
| ) | |
| campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) | |
| campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) | |
| campplus_model.eval() | |
| campplus_model.to(device) | |
| vocoder_type = model_params.vocoder.type | |
| if vocoder_type == 'bigvgan': | |
| from modules.bigvgan import bigvgan | |
| bigvgan_name = model_params.vocoder.name | |
| bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False) | |
| # remove weight norm in the model and set to eval mode | |
| bigvgan_model.remove_weight_norm() | |
| bigvgan_model = bigvgan_model.eval().to(device) | |
| vocoder_fn = bigvgan_model | |
| elif vocoder_type == 'hifigan': | |
| from modules.hifigan.generator import HiFTGenerator | |
| from modules.hifigan.f0_predictor import ConvRNNF0Predictor | |
| hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r')) | |
| hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) | |
| hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None) | |
| hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu')) | |
| hift_gen.eval() | |
| hift_gen.to(device) | |
| vocoder_fn = hift_gen | |
| elif vocoder_type == "vocos": | |
| vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r')) | |
| vocos_path = model_params.vocoder.vocos.path | |
| vocos_model_params = recursive_munch(vocos_config['model_params']) | |
| vocos = build_model(vocos_model_params, stage='mel_vocos') | |
| vocos_checkpoint_path = vocos_path | |
| vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path, | |
| load_only_params=True, ignore_modules=[], is_distributed=False) | |
| _ = [vocos[key].eval().to(device) for key in vocos] | |
| _ = [vocos[key].to(device) for key in vocos] | |
| total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys()) | |
| print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M") | |
| vocoder_fn = vocos.decoder | |
| else: | |
| raise ValueError(f"Unknown vocoder type: {vocoder_type}") | |
| speech_tokenizer_type = model_params.speech_tokenizer.type | |
| if speech_tokenizer_type == 'whisper': | |
| # whisper | |
| from transformers import AutoFeatureExtractor, WhisperModel | |
| whisper_name = model_params.speech_tokenizer.name | |
| whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device) | |
| del whisper_model.decoder | |
| whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) | |
| def semantic_fn(waves_16k): | |
| ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()], | |
| return_tensors="pt", | |
| return_attention_mask=True) | |
| ori_input_features = whisper_model._mask_input_features( | |
| ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device) | |
| with torch.no_grad(): | |
| ori_outputs = whisper_model.encoder( | |
| ori_input_features.to(whisper_model.encoder.dtype), | |
| head_mask=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=True, | |
| ) | |
| S_ori = ori_outputs.last_hidden_state.to(torch.float32) | |
| S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1] | |
| return S_ori | |
| elif speech_tokenizer_type == 'cnhubert': | |
| from transformers import ( | |
| Wav2Vec2FeatureExtractor, | |
| HubertModel, | |
| ) | |
| hubert_model_name = config['model_params']['speech_tokenizer']['name'] | |
| hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name) | |
| hubert_model = HubertModel.from_pretrained(hubert_model_name) | |
| hubert_model = hubert_model.to(device) | |
| hubert_model = hubert_model.eval() | |
| hubert_model = hubert_model.half() | |
| def semantic_fn(waves_16k): | |
| ori_waves_16k_input_list = [ | |
| waves_16k[bib].cpu().numpy() | |
| for bib in range(len(waves_16k)) | |
| ] | |
| ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list, | |
| return_tensors="pt", | |
| return_attention_mask=True, | |
| padding=True, | |
| sampling_rate=16000).to(device) | |
| with torch.no_grad(): | |
| ori_outputs = hubert_model( | |
| ori_inputs.input_values.half(), | |
| ) | |
| S_ori = ori_outputs.last_hidden_state.float() | |
| return S_ori | |
| elif speech_tokenizer_type == 'xlsr': | |
| from transformers import ( | |
| Wav2Vec2FeatureExtractor, | |
| Wav2Vec2Model, | |
| ) | |
| model_name = config['model_params']['speech_tokenizer']['name'] | |
| output_layer = config['model_params']['speech_tokenizer']['output_layer'] | |
| wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) | |
| wav2vec_model = Wav2Vec2Model.from_pretrained(model_name) | |
| wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer] | |
| wav2vec_model = wav2vec_model.to(device) | |
| wav2vec_model = wav2vec_model.eval() | |
| wav2vec_model = wav2vec_model.half() | |
| def semantic_fn(waves_16k): | |
| ori_waves_16k_input_list = [ | |
| waves_16k[bib].cpu().numpy() | |
| for bib in range(len(waves_16k)) | |
| ] | |
| ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list, | |
| return_tensors="pt", | |
| return_attention_mask=True, | |
| padding=True, | |
| sampling_rate=16000).to(device) | |
| with torch.no_grad(): | |
| ori_outputs = wav2vec_model( | |
| ori_inputs.input_values.half(), | |
| ) | |
| S_ori = ori_outputs.last_hidden_state.float() | |
| return S_ori | |
| else: | |
| raise ValueError(f"Unknown speech tokenizer type: {speech_tokenizer_type}") | |
| # Generate mel spectrograms | |
| mel_fn_args = { | |
| "n_fft": config['preprocess_params']['spect_params']['n_fft'], | |
| "win_size": config['preprocess_params']['spect_params']['win_length'], | |
| "hop_size": config['preprocess_params']['spect_params']['hop_length'], | |
| "num_mels": config['preprocess_params']['spect_params']['n_mels'], | |
| "sampling_rate": sr, | |
| "fmin": config['preprocess_params']['spect_params'].get('fmin', 0), | |
| "fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000, | |
| "center": False | |
| } | |
| from modules.audio import mel_spectrogram | |
| to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) | |
| return ( | |
| model, | |
| semantic_fn, | |
| f0_fn, | |
| vocoder_fn, | |
| campplus_model, | |
| to_mel, | |
| mel_fn_args, | |
| ) | |
| def adjust_f0_semitones(f0_sequence, n_semitones): | |
| factor = 2 ** (n_semitones / 12) | |
| return f0_sequence * factor | |
| def crossfade(chunk1, chunk2, overlap): | |
| fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 | |
| fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 | |
| if len(chunk2) < overlap: | |
| chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)] | |
| else: | |
| chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out | |
| return chunk2 | |
| def main(args): | |
| model, semantic_fn, f0_fn, vocoder_fn, campplus_model, mel_fn, mel_fn_args = load_models(args) | |
| sr = mel_fn_args['sampling_rate'] | |
| f0_condition = args.f0_condition | |
| auto_f0_adjust = args.auto_f0_adjust | |
| pitch_shift = args.semi_tone_shift | |
| source = args.source | |
| target_name = args.target | |
| diffusion_steps = args.diffusion_steps | |
| length_adjust = args.length_adjust | |
| inference_cfg_rate = args.inference_cfg_rate | |
| source_audio = librosa.load(source, sr=sr)[0] | |
| ref_audio = librosa.load(target_name, sr=sr)[0] | |
| sr = 22050 if not f0_condition else 44100 | |
| hop_length = 256 if not f0_condition else 512 | |
| max_context_window = sr // hop_length * 30 | |
| overlap_frame_len = 16 | |
| overlap_wave_len = overlap_frame_len * hop_length | |
| # Process audio | |
| source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device) | |
| ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device) | |
| time_vc_start = time.time() | |
| # Resample | |
| converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) | |
| # if source audio less than 30 seconds, whisper can handle in one forward | |
| if converted_waves_16k.size(-1) <= 16000 * 30: | |
| S_alt = semantic_fn(converted_waves_16k) | |
| else: | |
| overlapping_time = 5 # 5 seconds | |
| S_alt_list = [] | |
| buffer = None | |
| traversed_time = 0 | |
| while traversed_time < converted_waves_16k.size(-1): | |
| if buffer is None: # first chunk | |
| chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30] | |
| else: | |
| chunk = torch.cat( | |
| [buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], | |
| dim=-1) | |
| S_alt = semantic_fn(chunk) | |
| if traversed_time == 0: | |
| S_alt_list.append(S_alt) | |
| else: | |
| S_alt_list.append(S_alt[:, 50 * overlapping_time:]) | |
| buffer = chunk[:, -16000 * overlapping_time:] | |
| traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time | |
| S_alt = torch.cat(S_alt_list, dim=1) | |
| ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) | |
| S_ori = semantic_fn(ori_waves_16k) | |
| mel = mel_fn(source_audio.to(device).float()) | |
| mel2 = mel_fn(ref_audio.to(device).float()) | |
| target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) | |
| target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) | |
| feat2 = torchaudio.compliance.kaldi.fbank(ori_waves_16k, | |
| num_mel_bins=80, | |
| dither=0, | |
| sample_frequency=16000) | |
| feat2 = feat2 - feat2.mean(dim=0, keepdim=True) | |
| style2 = campplus_model(feat2.unsqueeze(0)) | |
| if f0_condition: | |
| F0_ori = f0_fn(ori_waves_16k[0], thred=0.03) | |
| F0_alt = f0_fn(converted_waves_16k[0], thred=0.03) | |
| F0_ori = torch.from_numpy(F0_ori).to(device)[None] | |
| F0_alt = torch.from_numpy(F0_alt).to(device)[None] | |
| voiced_F0_ori = F0_ori[F0_ori > 1] | |
| voiced_F0_alt = F0_alt[F0_alt > 1] | |
| log_f0_alt = torch.log(F0_alt + 1e-5) | |
| voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) | |
| voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) | |
| median_log_f0_ori = torch.median(voiced_log_f0_ori) | |
| median_log_f0_alt = torch.median(voiced_log_f0_alt) | |
| # shift alt log f0 level to ori log f0 level | |
| shifted_log_f0_alt = log_f0_alt.clone() | |
| if auto_f0_adjust: | |
| shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori | |
| shifted_f0_alt = torch.exp(shifted_log_f0_alt) | |
| if pitch_shift != 0: | |
| shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) | |
| else: | |
| F0_ori = None | |
| F0_alt = None | |
| shifted_f0_alt = None | |
| # Length regulation | |
| cond, _, codes, commitment_loss, codebook_loss = model.length_regulator(S_alt, ylens=target_lengths, | |
| n_quantizers=3, | |
| f0=shifted_f0_alt) | |
| prompt_condition, _, codes, commitment_loss, codebook_loss = model.length_regulator(S_ori, | |
| ylens=target2_lengths, | |
| n_quantizers=3, | |
| f0=F0_ori) | |
| max_source_window = max_context_window - mel2.size(2) | |
| # split source condition (cond) into chunks | |
| processed_frames = 0 | |
| generated_wave_chunks = [] | |
| # generate chunk by chunk and stream the output | |
| while processed_frames < cond.size(1): | |
| chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] | |
| is_last_chunk = processed_frames + max_source_window >= cond.size(1) | |
| cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) | |
| with torch.autocast(device_type=device.type, dtype=torch.float16 if fp16 else torch.float32): | |
| # Voice Conversion | |
| vc_target = model.cfm.inference(cat_condition, | |
| torch.LongTensor([cat_condition.size(1)]).to(mel2.device), | |
| mel2, style2, None, diffusion_steps, | |
| inference_cfg_rate=inference_cfg_rate) | |
| vc_target = vc_target[:, :, mel2.size(-1):] | |
| vc_wave = vocoder_fn(vc_target.float()).squeeze() | |
| vc_wave = vc_wave[None, :] | |
| if processed_frames == 0: | |
| if is_last_chunk: | |
| output_wave = vc_wave[0].cpu().numpy() | |
| generated_wave_chunks.append(output_wave) | |
| break | |
| output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() | |
| generated_wave_chunks.append(output_wave) | |
| previous_chunk = vc_wave[0, -overlap_wave_len:] | |
| processed_frames += vc_target.size(2) - overlap_frame_len | |
| elif is_last_chunk: | |
| output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) | |
| generated_wave_chunks.append(output_wave) | |
| processed_frames += vc_target.size(2) - overlap_frame_len | |
| break | |
| else: | |
| output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), | |
| overlap_wave_len) | |
| generated_wave_chunks.append(output_wave) | |
| previous_chunk = vc_wave[0, -overlap_wave_len:] | |
| processed_frames += vc_target.size(2) - overlap_frame_len | |
| vc_wave = torch.tensor(np.concatenate(generated_wave_chunks))[None, :].float() | |
| time_vc_end = time.time() | |
| print(f"RTF: {(time_vc_end - time_vc_start) / vc_wave.size(-1) * sr}") | |
| source_name = os.path.basename(source).split(".")[0] | |
| target_name = os.path.basename(target_name).split(".")[0] | |
| os.makedirs(args.output, exist_ok=True) | |
| torchaudio.save(os.path.join(args.output, f"vc_{source_name}_{target_name}_{length_adjust}_{diffusion_steps}_{inference_cfg_rate}.wav"), vc_wave.cpu(), sr) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--source", type=str, default="./examples/source/source_s1.wav") | |
| parser.add_argument("--target", type=str, default="./examples/reference/s1p1.wav") | |
| parser.add_argument("--output", type=str, default="./reconstructed") | |
| parser.add_argument("--diffusion-steps", type=int, default=30) | |
| parser.add_argument("--length-adjust", type=float, default=1.0) | |
| parser.add_argument("--inference-cfg-rate", type=float, default=0.7) | |
| parser.add_argument("--f0-condition", type=str2bool, default=False) | |
| parser.add_argument("--auto-f0-adjust", type=str2bool, default=False) | |
| parser.add_argument("--semi-tone-shift", type=int, default=0) | |
| parser.add_argument("--checkpoint", type=str, help="Path to the checkpoint file", default=None) | |
| parser.add_argument("--config", type=str, help="Path to the config file", default=None) | |
| parser.add_argument("--fp16", type=str2bool, default=True) | |
| args = parser.parse_args() | |
| main(args) | |