|
|
|
import streamlit as st |
|
from langchain.chains.history_aware_retriever import create_history_aware_retriever |
|
from langchain.chains.retrieval import create_retrieval_chain |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.chat_message_histories import ChatMessageHistory |
|
from langchain_core.chat_history import BaseChatMessageHistory |
|
from langchain_core.prompts import ChatPromptTemplate,MessagesPlaceholder |
|
from langchain_groq import ChatGroq |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain_core.output_parsers import StrOutputParser |
|
import os |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
|
|
os.environ['HF_TOKEN']=os.getenv('HF_TOKEN') |
|
os.environ['GROQ_API_KEY']=os.getenv('GROQ_API_KEY') |
|
embeddings=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
st.title("π―π£π₯π²πΎπππΎ : π―π£π₯ π°ππΎπππππ πΊππ½ π ππππΎππππ ππππ ππΎπππππ πΌππΊπ πππππππ") |
|
st.write("upload pdfs and ask questions related to pdfs") |
|
llm=ChatGroq(model="Gemma2-9b-It") |
|
session_id=st.text_input("Session id",value="common_session") |
|
|
|
|
|
if 'store' not in st.session_state: |
|
st.session_state.store={} |
|
|
|
|
|
uploaded_files=st.file_uploader("Drop the pdf files here",type="pdf",accept_multiple_files=True) |
|
if uploaded_files: |
|
documents=[] |
|
for uploaded_file in uploaded_files: |
|
temppdf=f"./temp.pdf" |
|
with open(temppdf,"wb") as file: |
|
file.write(uploaded_file.getvalue()) |
|
file_name=uploaded_file.name |
|
docs=PyPDFLoader(temppdf).load() |
|
documents.extend(docs) |
|
|
|
if os.path.exists("./temp.pdf"): |
|
os.remove("./temp.pdf") |
|
|
|
text_splitter=RecursiveCharacterTextSplitter(chunk_size=5000,chunk_overlap=500) |
|
splits=text_splitter.split_documents(documents) |
|
faiss_index = FAISS.from_documents(splits, embeddings) |
|
retriever=faiss_index.as_retriever() |
|
|
|
|
|
context_system_prompt=( |
|
"Given a chat history and latest user question" |
|
"which might reference context in the chat history, " |
|
"formulate a standalone question which can be understood " |
|
"without the chat history. Do Not answer the question, " |
|
"just reformulate it if needed and otherwise return it as it is" |
|
) |
|
context_prompt=ChatPromptTemplate.from_messages([ |
|
("system",context_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human","{input}")] |
|
) |
|
|
|
history_aware_ret=create_history_aware_retriever(llm,retriever,context_prompt) |
|
|
|
system_prompt=( |
|
"You are 'PDFSense' a PDF reading and answering assistant. " |
|
"Use the following pieces of retrieved context to answer " |
|
"the question. If you don't know the answer, say that you dont know." |
|
"Answer the questions nicely." |
|
"\n\n" |
|
"{context}" |
|
) |
|
|
|
prompt=ChatPromptTemplate.from_messages( |
|
[ |
|
("system",system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human","{input}") |
|
] |
|
) |
|
|
|
qa_chain=create_stuff_documents_chain(llm,prompt) |
|
rag_chain=create_retrieval_chain(history_aware_ret,qa_chain) |
|
|
|
|
|
def get_session_history(session:str)-> BaseChatMessageHistory: |
|
if session_id not in st.session_state.store: |
|
st.session_state.store[session_id]=ChatMessageHistory() |
|
return st.session_state.store[session_id] |
|
|
|
|
|
conversation_rag=RunnableWithMessageHistory( |
|
rag_chain, |
|
get_session_history, |
|
input_messages_key="input", |
|
history_messages_key="chat_history", |
|
output_messages_key="answer" |
|
) |
|
|
|
user_input=st.text_input("Enter question") |
|
if user_input: |
|
session_history=get_session_history(session_id) |
|
response=conversation_rag.invoke( |
|
{"input":user_input}, |
|
config={ |
|
"configurable":{"session_id":session_id} |
|
}, |
|
) |
|
st.write(st.session_state.store) |
|
st.write("Assistant:",response['answer']) |
|
st.write("Chat History",session_history.messages) |