shirt-detection / app.py
AkashDataScience's picture
Added checkbox for EigenCAM
cbdd536
import os
import cv2
import math
import torch
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from glob import glob
from utils.plots import Annotator, colors
from utils.augmentations import letterbox
from models.common import DetectMultiBackend
from utils.general import non_max_suppression, scale_boxes
from utils.torch_utils import select_device, smart_inference_mode
from pytorch_grad_cam import EigenCAM
import torchvision.transforms as transforms
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
weights = "runs/train/best_striped.pt"
data = "data.yaml"
# Load model
device = select_device('cpu')
model = DetectMultiBackend(weights=weights, device=device, fp16=False, data=data)
target_layers = [model.model.model[-2]]
false_detection_data = glob(os.path.join("false_detection", '*.jpg'))
false_detection_data = [x.replace('\\', '/') for x in false_detection_data]
def resize_image_pil(image, new_width, new_height):
# Convert to PIL image
img = Image.fromarray(np.array(image))
# Get original size
width, height = img.size
# Calculate scale
width_scale = new_width / width
height_scale = new_height / height
scale = min(width_scale, height_scale)
# Resize
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
# Crop to exact size
resized = resized.crop((0, 0, new_width, new_height))
return resized
def display_false_detection_data(false_detection_data, number_of_samples):
fig = plt.figure(figsize=(10, 10))
x_count = 5
y_count = 1 if number_of_samples <= 5 else math.floor(number_of_samples / x_count)
for i in range(number_of_samples):
plt.subplot(y_count, x_count, i + 1)
img = cv2.imread(false_detection_data[i])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.xticks([])
plt.yticks([])
return fig
def inference(input_img, conf_thres, iou_thres, is_eigen_cam=True, is_false_detection_images=True, num_false_detection_images=10):
stride, names, pt = model.stride, model.names, model.pt
# Load image
img0 = input_img.copy()
img = letterbox(img0, 640, stride=stride, auto=True)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device).float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img, augment=False, visualize=False)
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=None, max_det=1000)
# Process predictions
seen = 0
for i, det in enumerate(pred): # per image
seen += 1
annotator = Annotator(img0, line_width=2, example=str(model.names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(img.shape[2:], det[:, :4], img0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = f'{names[c]} {conf:.2f}'
annotator.box_label(xyxy, label, color=colors(c, True))
if is_false_detection_images:
# Plot the misclassified data
misclassified_images = display_false_detection_data(false_detection_data, number_of_samples=num_false_detection_images)
else:
misclassified_images = None
if is_eigen_cam:
img_GC = cv2.resize(input_img, (640, 640))
rgb_img = img_GC.copy()
img_GC = np.float32(img_GC) / 255
transform = transforms.ToTensor()
tensor = transform(img_GC).unsqueeze(0)
cam = EigenCAM(model, target_layers)
grayscale_cam = cam(tensor)[0, :, :]
cam_image = show_cam_on_image(img_GC, grayscale_cam, use_rgb=True)
else:
cam_image = None
return img0, cam_image, misclassified_images
title = "YOLOv9 model to detect shirt/tshirt"
description = "A simple Gradio interface to infer on YOLOv9 model and detect tshirt in image"
examples = [["image_1.jpg", 0.25, 0.45, True, True, 10],
["image_2.jpg", 0.25, 0.45, True, True, 10],
["image_3.jpg", 0.25, 0.45, True, True, 10],
["image_4.jpg", 0.25, 0.45, True, True, 10],
["image_5.jpg", 0.25, 0.45, True, True, 10],
["image_6.jpg", 0.25, 0.45, True, True, 10],
["image_7.jpg", 0.25, 0.45, True, True, 10],
["image_8.jpg", 0.25, 0.45, True, True, 10],
["image_9.jpg", 0.25, 0.45, True, True, 10],
["image_10.jpg", 0.25, 0.45, True, True, 10]]
demo = gr.Interface(inference,
inputs = [gr.Image(width=320, height=320, label="Input Image"),
gr.Slider(0, 1, 0.25, label="Confidence Threshold"),
gr.Slider(0, 1, 0.45, label="IoU Thresold"),
gr.Checkbox(label="Show Eigen CAM"),
gr.Checkbox(label="Show False Detection"),
gr.Slider(5, 35, value=10, step=5, label="Number of False Detection")],
outputs= [gr.Image(width=640, height=640, label="Output"),
gr.Image(label="EigenCAM"),
gr.Plot(label="False Detection")],
title=title,
description=description,
examples=examples)
demo.launch()