Spaces:
Sleeping
Sleeping
import torch | |
import random | |
import gradio as gr | |
from peft import PeftModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct" | |
model_kwargs = dict( | |
use_cache=False, | |
trust_remote_code=True, | |
attn_implementation='eager', # loading the model with flash-attenstion support | |
torch_dtype=torch.bfloat16, | |
device_map=None | |
) | |
base_model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs) | |
new_model = "checkpoint_dir/checkpoint-60" # change to the path where your model is saved | |
model = PeftModel.from_pretrained(base_model, new_model) | |
model = model.merge_and_unload() | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "right" | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def infer(message, history): | |
chat_list = [] | |
for chat in history: | |
chat_user = {"role":"user", "content":chat[0]} | |
chat_assistant = {"role":"assistant", "content":chat[1]} | |
chat_list.append(chat_user) | |
chat_list.append(chat_assistant) | |
chat_list.append({"role": "user", "content": message}) | |
prompt = pipe.tokenizer.apply_chat_template(chat_list, tokenize=False, add_generation_prompt=True) | |
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, num_beams=1, temperature=0.3, top_k=50, top_p=0.95, max_time= 180) | |
return outputs[0]['generated_text'][len(prompt):].strip() | |
examples=[["I am planning to buy a dog and a cat. Suggest some breeds that get along with each other"], | |
["Explain biased coin flip"], | |
["I want to buy a house. Suggest some factors to consider while making final decision"]] | |
gr.ChatInterface(infer, chatbot=gr.Chatbot(height=300), | |
textbox=gr.Textbox(placeholder="How can I help you today", container=False, | |
scale=7), theme="soft", examples=examples, undo_btn=None, | |
title="Phi-3 Assistant").launch() |