Phi-3_assistant / app.py
AkashDataScience's picture
Changed model
e59dc29
import torch
import random
import gradio as gr
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
model_kwargs = dict(
use_cache=False,
trust_remote_code=True,
attn_implementation='eager', # loading the model with flash-attenstion support
torch_dtype=torch.bfloat16,
device_map=None
)
base_model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
new_model = "checkpoint_dir/checkpoint-60" # change to the path where your model is saved
model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def infer(message, history):
chat_list = []
for chat in history:
chat_user = {"role":"user", "content":chat[0]}
chat_assistant = {"role":"assistant", "content":chat[1]}
chat_list.append(chat_user)
chat_list.append(chat_assistant)
chat_list.append({"role": "user", "content": message})
prompt = pipe.tokenizer.apply_chat_template(chat_list, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, num_beams=1, temperature=0.3, top_k=50, top_p=0.95, max_time= 180)
return outputs[0]['generated_text'][len(prompt):].strip()
examples=[["I am planning to buy a dog and a cat. Suggest some breeds that get along with each other"],
["Explain biased coin flip"],
["I want to buy a house. Suggest some factors to consider while making final decision"]]
gr.ChatInterface(infer, chatbot=gr.Chatbot(height=300),
textbox=gr.Textbox(placeholder="How can I help you today", container=False,
scale=7), theme="soft", examples=examples, undo_btn=None,
title="Phi-3 Assistant").launch()