Spaces:
Running
Running
from PyPDF2 import PdfReader | |
import gradio as gr | |
from docling.document_converter import DocumentConverter, PdfFormatOption | |
from docling.datamodel.pipeline_options import PdfPipelineOptions | |
from docling.datamodel.base_models import InputFormat | |
from paddleocr import PPStructureV3 | |
from pdf2image import convert_from_path | |
import numpy as np | |
import torch | |
from docling_core.types.doc import DoclingDocument | |
from docling_core.types.doc.document import DocTagsDocument | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
from transformers.image_utils import load_image | |
from pathlib import Path | |
import time | |
import os | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# Optimize for CPU: set float32 and use all CPU threads | |
if DEVICE == "cpu": | |
torch.set_num_threads(os.cpu_count() or 1) | |
smoldocling_dtype = torch.float32 | |
else: | |
smoldocling_dtype = torch.bfloat16 | |
pipeline_options = PdfPipelineOptions(enable_remote_services=True) | |
converter = DocumentConverter( | |
format_options={ | |
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options) | |
} | |
) | |
pipeline = PPStructureV3() | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForVision2Seq.from_pretrained( | |
"ds4sd/SmolDocling-256M-preview", | |
torch_dtype=smoldocling_dtype, | |
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager", | |
).to(DEVICE) | |
def get_pdf_page_count(pdf_path): | |
reader = PdfReader(pdf_path) | |
return len(reader.pages) | |
def get_page_image(pdf_path, page_num): | |
start = time.time() | |
images = convert_from_path(pdf_path, first_page=page_num, last_page=page_num) | |
page_image = images[0] | |
runtime = time.time() - start | |
return page_image, f"{runtime:.2f} s" | |
def get_docling_ocr(pdf_path, page_num): | |
start = time.time() | |
result = converter.convert(pdf_path, page_range=(page_num, page_num)) | |
markdown_text_docling = result.document.export_to_markdown() | |
runtime = time.time() - start | |
return markdown_text_docling, f"{runtime:.2f} s" | |
def get_paddle_ocr(pdf_path, page_num): | |
start = time.time() | |
page_image = get_page_image(pdf_path, page_num)[0] | |
output = pipeline.predict(input=np.array(page_image)) | |
markdown_list = [] | |
for res in output: | |
md_info = res.markdown | |
markdown_list.append(md_info) | |
markdown_text_paddleOCR = pipeline.concatenate_markdown_pages(markdown_list) | |
runtime = time.time() - start | |
return markdown_text_paddleOCR, f"{runtime:.2f} s" | |
def get_smoldocling_ocr(pdf_path, page_num): | |
start = time.time() | |
page_image = get_page_image(pdf_path, page_num)[0] | |
image = load_image(page_image) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image"}, | |
{"type": "text", "text": "Convert this page to docling."} | |
] | |
}, | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
inputs = inputs.to(DEVICE) | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=1500, do_sample=False, num_beams=1, temperature=1.0) | |
prompt_length = inputs.input_ids.shape[1] | |
trimmed_generated_ids = generated_ids[:, prompt_length:] | |
doctags = processor.batch_decode( | |
trimmed_generated_ids, | |
skip_special_tokens=False, | |
)[0].lstrip() | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) | |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document") | |
markdown_text_smoldocling = doc.export_to_markdown() | |
runtime = time.time() - start | |
return markdown_text_smoldocling, f"{runtime:.2f} s" | |
title = "OCR Arena" | |
description = "A simple Gradio interface to extract text from PDFs and compare OCR models" | |
examples = [["data/amazon-10-k-2024.pdf"], | |
["data/goog-10-k-2023.pdf"]] | |
with gr.Blocks(theme=gr.themes.Glass()) as demo: | |
gr.Markdown(f"# {title}\n{description}") | |
with gr.Column(): | |
pdf = gr.File(label="Input PDFs", file_types=[".pdf"]) | |
def show_slider(pdf_path): | |
if pdf_path is None: | |
page_num = gr.Markdown("## No Input Provided") | |
else: | |
page_count = get_pdf_page_count(pdf_path) | |
page_num = gr.Slider(1, page_count, value=1, step=1, label="Page Number") | |
with gr.Row(): | |
clear_btn = gr.ClearButton(components=[pdf, page_num]) | |
submit_btn = gr.Button("Submit", variant='primary') | |
submit_btn.click(get_page_image, inputs=[pdf, page_num], outputs=[original, original_runtime]).then( | |
get_docling_ocr, inputs=[pdf, page_num], outputs=[docling_ocr_out, docling_ocr_runtime]).then( | |
get_paddle_ocr, inputs=[pdf, page_num], outputs=[paddle_ocr_out, paddle_ocr_runtime]).then( | |
get_smoldocling_ocr, inputs=[pdf, page_num], outputs=[smoldocling_ocr_out, smoldocling_ocr_runtime]) | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
original = gr.Image(width=640, height=640, label="Original Page", interactive=False) | |
original_runtime = gr.Textbox(label="Image Extraction Time", type="text", interactive=False) | |
with gr.Column(): | |
docling_ocr_out = gr.Textbox(label="Docling OCR Output", type="text", interactive=False) | |
docling_ocr_runtime = gr.Textbox(label="Docling OCR Time", type="text", interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
paddle_ocr_out = gr.Textbox(label="Paddle OCR Output", type="text", interactive=False) | |
paddle_ocr_runtime = gr.Textbox(label="Paddle OCR Time", type="text", interactive=False) | |
with gr.Column(): | |
smoldocling_ocr_out = gr.Textbox(label="SmolDocling OCR Output", type="text", interactive=False) | |
smoldocling_ocr_runtime = gr.Textbox(label="SmolDocling OCR Time", type="text", interactive=False) | |
examples_obj = gr.Examples(examples=examples, inputs=[pdf]) | |
demo.launch() | |