Spaces:
Sleeping
Sleeping
AjithKSenthil
commited on
Commit
•
cab07a0
1
Parent(s):
d2e169c
Upload DataVisualization.py
Browse files- DataVisualization.py +57 -0
DataVisualization.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DataVisualization.py
|
2 |
+
# Purpose: Script to create visualizations for chat data and machine learning model results.
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
|
8 |
+
# Load Data
|
9 |
+
# Assuming you have a CSV file with your model's predictions and actual scores
|
10 |
+
datafile_path = "data/model_predictions.csv"
|
11 |
+
df = pd.read_csv(datafile_path)
|
12 |
+
|
13 |
+
# Visualization Functions
|
14 |
+
|
15 |
+
def plot_feature_importances(model):
|
16 |
+
"""
|
17 |
+
Plots feature importances of a trained model.
|
18 |
+
"""
|
19 |
+
feat_importances = pd.Series(model.feature_importances_, index=df.columns[:-1])
|
20 |
+
feat_importances.nlargest(10).plot(kind='barh')
|
21 |
+
plt.title('Feature Importances')
|
22 |
+
plt.show()
|
23 |
+
|
24 |
+
def plot_actual_vs_predicted(y_actual, y_pred, title='Actual vs Predicted'):
|
25 |
+
"""
|
26 |
+
Scatter plot for actual vs predicted values.
|
27 |
+
"""
|
28 |
+
plt.figure(figsize=(10, 6))
|
29 |
+
sns.scatterplot(x=y_actual, y=y_pred, alpha=0.6)
|
30 |
+
plt.plot([y_actual.min(), y_actual.max()], [y_actual.min(), y_actual.max()], '--r')
|
31 |
+
plt.xlabel('Actual')
|
32 |
+
plt.ylabel('Predicted')
|
33 |
+
plt.title(title)
|
34 |
+
plt.show()
|
35 |
+
|
36 |
+
def plot_error_distribution(y_actual, y_pred, title='Error Distribution'):
|
37 |
+
"""
|
38 |
+
Histogram for prediction errors.
|
39 |
+
"""
|
40 |
+
errors = y_actual - y_pred
|
41 |
+
plt.figure(figsize=(10, 6))
|
42 |
+
sns.histplot(errors, bins=20, kde=True)
|
43 |
+
plt.xlabel('Prediction Error')
|
44 |
+
plt.title(title)
|
45 |
+
plt.show()
|
46 |
+
|
47 |
+
# Example Usage
|
48 |
+
# These are just examples. Replace 'your_model' with your actual trained model
|
49 |
+
# and 'y_actual', 'y_pred' with your actual data.
|
50 |
+
|
51 |
+
# plot_feature_importances(your_model)
|
52 |
+
# plot_actual_vs_predicted(df['ActualScore'], df['PredictedScore'])
|
53 |
+
# plot_error_distribution(df['ActualScore'], df['PredictedScore'])
|
54 |
+
|
55 |
+
# Note to Users:
|
56 |
+
# - Adjust the data paths, column names, and model variables as per your data and model.
|
57 |
+
# - Feel free to add more visualization functions based on your specific needs.
|