Spaces:
Sleeping
Sleeping
import pandas as pd | |
import openai | |
import tiktoken | |
import os | |
import config | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
load_dotenv(override=True) | |
client = OpenAI( | |
api_key=os.getenv("OPENAI_API_KEY") | |
) | |
# Set your OpenAI API key | |
# Embedding model parameters | |
embedding_model = "text-embedding-ada-002" | |
embedding_encoding = "cl100k_base" | |
max_tokens = 8000 | |
# Function to get embeddings | |
def get_embedding(text, model="text-embedding-3-small"): | |
text = text.replace("\n", " ") | |
return client.embeddings.create(input = [text], model=model).data[0].embedding | |
# Load preprocessed chat transcript data | |
input_datapath = "../data/processed_chat_data.csv" | |
output_datapath = "../data/chat_transcripts_with_embeddings.csv" | |
df = pd.read_csv(input_datapath) | |
# Ensure your chat transcripts are within the token limit for embedding | |
encoding = tiktoken.get_encoding(embedding_encoding) | |
df["n_tokens"] = df["transcript"].apply(lambda x: len(encoding.encode(x))) | |
df = df[df["n_tokens"] <= max_tokens] | |
# Extract embeddings for each chat transcript | |
print("Extracting embeddings...") | |
df["embedding"] = df["transcript"].apply(lambda x: get_embedding(x, embedding_model)) | |
# Save the data with embeddings | |
df.to_csv(output_datapath, index=False) | |
print(f"Data with embeddings saved to {output_datapath}") |