Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
import google.generativeai as genai | |
from langchain.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
from dotenv import load_dotenv | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from langchain_huggingface import HuggingFaceEndpoint | |
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') | |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN | |
def get_pdf_text(pdf_docs): | |
text="" | |
for pdf in pdf_docs: | |
pdf_reader= PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text+= page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vector_store(text_chunks): | |
model_name = "BAAI/bge-large-en" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': True} | |
hf = HuggingFaceBgeEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
vector_store = FAISS.from_texts(text_chunks, embedding=hf) | |
vector_store.save_local("faiss_index") | |
def get_conversational_chain(): | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
Context:\n {context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
model = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
temperature=0.3, | |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, | |
) | |
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
def user_input(user_question): | |
model_name = "BAAI/bge-large-en" | |
model_kwargs = {'device': 'cpu'} | |
encode_kwargs = {'normalize_embeddings': True} | |
hf = HuggingFaceBgeEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
new_db = FAISS.load_local("faiss_index", hf,allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain( | |
{"input_documents":docs, "question": user_question} | |
, return_only_outputs=True) | |
print(response) | |
st.write("Reply: ", response["output_text"]) | |
def main(): | |
st.set_page_config("Chat PDF") | |
st.header("Chat with PDF using Gemma") | |
user_question = st.text_input("Ask a Question from the PDF Files") | |
if user_question: | |
user_input(user_question) | |
with st.sidebar: | |
st.title("Menu:") | |
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) | |
if st.button("Submit & Process"): | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
get_vector_store(text_chunks) | |
st.success("Done") | |
if __name__ == "__main__": | |
main() |