MyPharmaAI / app.py
Ajey95
Restore app source files without FAISS index
f39ba75
# # # Shiva
# # from flask import Flask, render_template, request, jsonify, session
# # import os
# # from dotenv import load_dotenv
# # import json
# # import random
# # from werkzeug.utils import secure_filename
# # import google.generativeai as genai
# # from pathlib import Path
# # # Load environment variables
# # load_dotenv()
# # app = Flask(__name__)
# # app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'dev-secret-key')
# # app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# # # Configure upload settings
# # UPLOAD_FOLDER = 'uploads'
# # ALLOWED_EXTENSIONS = {'txt', 'pdf', 'docx', 'doc', 'json', 'csv'}
# # app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# # # Create upload directory
# # os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# # # Configure Gemini API
# # GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
# # if GEMINI_API_KEY:
# # genai.configure(api_key=GEMINI_API_KEY)
# # model = genai.GenerativeModel('gemini-1.5-pro')
# # print("✅ Gemini API configured successfully!")
# # else:
# # model = None
# # print("⚠️ No Gemini API key found. Using fallback responses.")
# # # Import agents and utilities
# # from agents.router_agent import RouterAgent
# # from utils.helpers import load_quotes, get_greeting
# # from utils.file_processor import FileProcessor
# # def allowed_file(filename):
# # return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# # class MyPharmaAI:
# # def __init__(self):
# # self.router = RouterAgent(model) # Pass model to router
# # self.quotes = load_quotes()
# # self.file_processor = FileProcessor()
# # def process_query(self, query, user_name="Student", uploaded_files=None):
# # """Process user query through the router agent with optional file context"""
# # try:
# # # Check if we have uploaded files to reference
# # file_context = ""
# # if uploaded_files and 'uploaded_files' in session:
# # file_context = self.get_file_context(session['uploaded_files'])
# # # Route the query to appropriate agent
# # response = self.router.route_query(query, file_context)
# # return {
# # 'success': True,
# # 'response': response,
# # 'agent_used': response.get('agent_type', 'unknown')
# # }
# # except Exception as e:
# # return {
# # 'success': False,
# # 'response': f"माफ करें (Sorry), I encountered an error: {str(e)}",
# # 'agent_used': 'error'
# # }
# # def get_file_context(self, uploaded_files):
# # """Get context from uploaded files"""
# # context = ""
# # for file_info in uploaded_files[-3:]: # Last 3 files only
# # file_path = file_info['path']
# # if os.path.exists(file_path):
# # try:
# # content = self.file_processor.extract_text(file_path)
# # if content:
# # context += f"\n\n📄 Content from {file_info['original_name']}:\n{content[:2000]}..." # Limit context
# # except Exception as e:
# # context += f"\n\n❌ Error reading {file_info['original_name']}: {str(e)}"
# # return context
# # def get_daily_quote(self):
# # """Get inspirational quote from Gita/Vedas"""
# # return random.choice(self.quotes) if self.quotes else "विद्या धनं सर्व धन प्रधानम्"
# # def process_file_upload(self, file):
# # """Process uploaded file and extract information"""
# # try:
# # if file and allowed_file(file.filename):
# # filename = secure_filename(file.filename)
# # timestamp = str(int(time.time()))
# # filename = f"{timestamp}_{filename}"
# # file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
# # file.save(file_path)
# # # Extract text content
# # content = self.file_processor.extract_text(file_path)
# # # Store in session
# # if 'uploaded_files' not in session:
# # session['uploaded_files'] = []
# # file_info = {
# # 'original_name': file.filename,
# # 'saved_name': filename,
# # 'path': file_path,
# # 'size': os.path.getsize(file_path),
# # 'preview': content[:500] if content else "No text content extracted"
# # }
# # session['uploaded_files'].append(file_info)
# # session.modified = True
# # return {
# # 'success': True,
# # 'message': f'File "{file.filename}" uploaded successfully! You can now ask questions about its content.',
# # 'file_info': file_info
# # }
# # else:
# # return {
# # 'success': False,
# # 'message': 'Invalid file type. Supported: TXT, PDF, DOCX, DOC, JSON, CSV'
# # }
# # except Exception as e:
# # return {
# # 'success': False,
# # 'message': f'Error uploading file: {str(e)}'
# # }
# # # Initialize the AI system
# # import time
# # pharma_ai = MyPharmaAI()
# # @app.route('/')
# # def index():
# # """Main chat interface"""
# # greeting = get_greeting()
# # daily_quote = pharma_ai.get_daily_quote()
# # # Get uploaded files info
# # uploaded_files = session.get('uploaded_files', [])
# # return render_template('index.html',
# # greeting=greeting,
# # daily_quote=daily_quote,
# # uploaded_files=uploaded_files,
# # api_available=bool(GEMINI_API_KEY))
# # @app.route('/chat', methods=['POST'])
# # def chat():
# # """Main chat endpoint"""
# # try:
# # data = request.get_json()
# # if not data or 'query' not in data:
# # return jsonify({
# # 'success': False,
# # 'error': 'No query provided'
# # }), 400
# # user_query = data.get('query', '').strip()
# # user_name = data.get('user_name', 'Student')
# # if not user_query:
# # return jsonify({
# # 'success': False,
# # 'error': 'Empty query'
# # }), 400
# # # Process the query (with file context if available)
# # result = pharma_ai.process_query(user_query, user_name, session.get('uploaded_files'))
# # return jsonify(result)
# # except Exception as e:
# # return jsonify({
# # 'success': False,
# # 'error': f'Server error: {str(e)}'
# # }), 500
# # @app.route('/upload', methods=['POST'])
# # def upload_file():
# # """Handle file upload"""
# # try:
# # if 'file' not in request.files:
# # return jsonify({
# # 'success': False,
# # 'error': 'No file provided'
# # }), 400
# # file = request.files['file']
# # if file.filename == '':
# # return jsonify({
# # 'success': False,
# # 'error': 'No file selected'
# # }), 400
# # result = pharma_ai.process_file_upload(file)
# # return jsonify(result)
# # except Exception as e:
# # return jsonify({
# # 'success': False,
# # 'error': f'Upload error: {str(e)}'
# # }), 500
# # @app.route('/files')
# # def get_uploaded_files():
# # """Get list of uploaded files"""
# # uploaded_files = session.get('uploaded_files', [])
# # return jsonify({
# # 'files': uploaded_files,
# # 'count': len(uploaded_files)
# # })
# # @app.route('/clear_files', methods=['POST'])
# # def clear_files():
# # """Clear uploaded files"""
# # try:
# # # Remove files from disk
# # if 'uploaded_files' in session:
# # for file_info in session['uploaded_files']:
# # file_path = file_info['path']
# # if os.path.exists(file_path):
# # os.remove(file_path)
# # # Clear session
# # session.pop('uploaded_files', None)
# # return jsonify({
# # 'success': True,
# # 'message': 'All files cleared successfully'
# # })
# # except Exception as e:
# # return jsonify({
# # 'success': False,
# # 'error': f'Error clearing files: {str(e)}'
# # }), 500
# # @app.route('/quote')
# # def get_quote():
# # """Get a random inspirational quote"""
# # quote = pharma_ai.get_daily_quote()
# # return jsonify({'quote': quote})
# # @app.route('/health')
# # def health_check():
# # """Health check endpoint"""
# # return jsonify({
# # 'status': 'healthy',
# # 'app': 'MyPharma AI',
# # 'version': '2.0.0',
# # 'gemini_api': 'connected' if GEMINI_API_KEY else 'not configured',
# # 'features': ['chat', 'file_upload', 'multi_agent', 'indian_theme']
# # })
# # if __name__ == '__main__':
# # # Create necessary directories
# # for directory in ['data', 'static/css', 'static/js', 'templates', 'agents', 'utils', 'uploads']:
# # os.makedirs(directory, exist_ok=True)
# # print("🇮🇳 MyPharma AI Starting...")
# # print(f"📁 Upload folder: {UPLOAD_FOLDER}")
# # print(f"🤖 Gemini API: {'✅ Ready' if GEMINI_API_KEY else '❌ Not configured'}")
# # print("🚀 Server starting on http://localhost:5000")
# # # Run the app
# # app.run(debug=True, port=5000)
# # # #### app.py (Main Application)
# # # from flask import Flask, render_template, request, jsonify
# # # import os
# # # from dotenv import load_dotenv
# # # import json
# # # import random
# # # # Load environment variables
# # # load_dotenv()
# # # app = Flask(__name__)
# # # app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'dev-secret-key')
# # # # Import agents
# # # from agents.router_agent import RouterAgent
# # # from utils.helpers import load_quotes, get_greeting
# # # class MyPharmaAI:
# # # def __init__(self):
# # # self.router = RouterAgent()
# # # self.quotes = load_quotes()
# # # def process_query(self, query, user_name="Student"):
# # # """Process user query through the router agent"""
# # # try:
# # # # Route the query to appropriate agent
# # # response = self.router.route_query(query)
# # # return {
# # # 'success': True,
# # # 'response': response,
# # # 'agent_used': response.get('agent_type', 'unknown')
# # # }
# # # except Exception as e:
# # # return {
# # # 'success': False,
# # # 'response': f"माफ करें (Sorry), I encountered an error: {str(e)}",
# # # 'agent_used': 'error'
# # # }
# # # def get_daily_quote(self):
# # # """Get inspirational quote from Gita/Vedas"""
# # # return random.choice(self.quotes) if self.quotes else "विद्या धनं सर्व धन प्रधानम्"
# # # # Initialize the AI system
# # # pharma_ai = MyPharmaAI()
# # # @app.route('/')
# # # def index():
# # # """Main chat interface"""
# # # greeting = get_greeting()
# # # daily_quote = pharma_ai.get_daily_quote()
# # # return render_template('index.html',
# # # greeting=greeting,
# # # daily_quote=daily_quote)
# # # @app.route('/chat', methods=['POST'])
# # # def chat():
# # # """Main chat endpoint"""
# # # try:
# # # data = request.get_json()
# # # if not data or 'query' not in data:
# # # return jsonify({
# # # 'success': False,
# # # 'error': 'No query provided'
# # # }), 400
# # # user_query = data.get('query', '').strip()
# # # user_name = data.get('user_name', 'Student')
# # # if not user_query:
# # # return jsonify({
# # # 'success': False,
# # # 'error': 'Empty query'
# # # }), 400
# # # # Process the query
# # # result = pharma_ai.process_query(user_query, user_name)
# # # return jsonify(result)
# # # except Exception as e:
# # # return jsonify({
# # # 'success': False,
# # # 'error': f'Server error: {str(e)}'
# # # }), 500
# # # @app.route('/quote')
# # # def get_quote():
# # # """Get a random inspirational quote"""
# # # quote = pharma_ai.get_daily_quote()
# # # return jsonify({'quote': quote})
# # # @app.route('/health')
# # # def health_check():
# # # """Health check endpoint"""
# # # return jsonify({
# # # 'status': 'healthy',
# # # 'app': 'MyPharma AI',
# # # 'version': '1.0.0'
# # # })
# # # if __name__ == '__main__':
# # # # Create data directories if they don't exist
# # # os.makedirs('data', exist_ok=True)
# # # os.makedirs('static/css', exist_ok=True)
# # # os.makedirs('static/js', exist_ok=True)
# # # os.makedirs('templates', exist_ok=True)
# # # os.makedirs('agents', exist_ok=True)
# # # os.makedirs('utils', exist_ok=True)
# # # # Run the app
# # # app.run(debug=True, port=5000)
# # app.py
# # Main Flask application for MyPharma AI
# from flask import Flask, render_template, request, jsonify, session
# import os
# import json
# import random
# import time
# from dotenv import load_dotenv
# from werkzeug.utils import secure_filename
# import google.generativeai as genai
# # Load environment variables from a .env file
# load_dotenv()
# # --- App Configuration ---
# app = Flask(__name__)
# app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'a-very-secret-key-for-dev')
# app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# # --- Upload Configuration ---
# UPLOAD_FOLDER = '/tmp/uploads'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'docx', 'json', 'csv'}
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# # --- Gemini API Configuration ---
# GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
# model = None
# if GEMINI_API_KEY:
# try:
# genai.configure(api_key=GEMINI_API_KEY)
# # Using gemini-1.5-flash for speed and cost-effectiveness
# model = genai.GenerativeModel('gemini-1.5-flash')
# print("✅ Gemini 1.5 Flash Model configured successfully!")
# except Exception as e:
# print(f"❌ Error configuring Gemini API: {e}")
# else:
# print("⚠️ No Gemini API key found. AI features will be disabled.")
# # --- Import Agents and Utilities ---
# # (Ensure these files exist in their respective directories)
# from agents.router_agent import RouterAgent
# from utils.helpers import load_quotes, get_greeting
# from utils.file_processor import FileProcessor
# def allowed_file(filename):
# """Check if the uploaded file has an allowed extension."""
# return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# # --- Main AI Application Class ---
# class MyPharmaAI:
# """Orchestrator for the entire AI system."""
# def __init__(self):
# self.router = RouterAgent(model) # The router now gets the configured model
# self.quotes = load_quotes()
# self.file_processor = FileProcessor()
# def process_query(self, query, user_name="Student", viva_state=None, uploaded_files=None, chat_history=None):
# """Routes a user's query to the appropriate agent, handling context."""
# try:
# # This block correctly gets the file content from the session data
# file_context = ""
# if uploaded_files:
# file_context = self.get_file_context(uploaded_files)
# # This passes the file content and chat history to the router
# response_data = self.router.route_query(query, file_context, viva_state, chat_history)
# return {
# 'success': True,
# **response_data
# }
# except Exception as e:
# print(f"Error in MyPharmaAI.process_query: {e}")
# return {
# 'success': False,
# 'message': f"Sorry, a critical error occurred: {str(e)}",
# 'agent_used': 'error'
# }
# def get_file_context(self, uploaded_files_session):
# """Extracts text from the most recent files to use as context."""
# context = ""
# for file_info in uploaded_files_session[-3:]: # Limit to last 3 files
# file_path = file_info.get('path')
# if file_path and os.path.exists(file_path):
# try:
# content = self.file_processor.extract_text(file_path)
# if content:
# # Limit context from each file to 2000 characters
# context += f"\n\n--- Content from {file_info['original_name']} ---\n{content[:2000]}..."
# except Exception as e:
# context += f"\n\n--- Error reading {file_info['original_name']}: {str(e)} ---"
# return context
# def get_daily_quote(self):
# """Returns a random quote."""
# return random.choice(self.quotes) if self.quotes else "विद्या धनं सर्व धन प्रधानम्"
# # Initialize the AI system
# pharma_ai = MyPharmaAI()
# # --- Flask Routes ---
# @app.route('/')
# def index():
# """Renders the main chat interface."""
# greeting = get_greeting()
# daily_quote = pharma_ai.get_daily_quote()
# uploaded_files = session.get('uploaded_files', [])
# return render_template('index.html',
# greeting=greeting,
# daily_quote=daily_quote,
# uploaded_files=uploaded_files)
# @app.route('/chat', methods=['POST'])
# def chat():
# """Handles the main chat logic, including session management for the Viva Agent."""
# try:
# data = request.get_json()
# query = data.get('query', '').strip()
# if not query:
# return jsonify({'success': False, 'error': 'Empty query'}), 400
# # --- HISTORY MANAGEMENT START ---
# # Get the conversation history from the session (or start a new one)
# chat_history = session.get('chat_history', [])
# # Get current viva state from session for the Viva Agent
# viva_state = session.get('viva_state', None)
# uploaded_files = session.get('uploaded_files', None)
# # Process the query through the main orchestrator
# result = pharma_ai.process_query(query, viva_state=viva_state, uploaded_files=uploaded_files,chat_history=chat_history)
# # If the query was successful, update the history
# if result.get('success'):
# # Add the user's query and the AI's message to the history
# chat_history.append({'role': 'user', 'parts': [query]})
# chat_history.append({'role': 'model', 'parts': [result.get('message', '')]})
# # Keep the history from getting too long (e.g., last 10 exchanges)
# session['chat_history'] = chat_history[-20:]
# # --- HISTORY MANAGEMENT END ---
# # If the Viva agent returns an updated state, save it to the session
# if 'viva_state' in result:
# session['viva_state'] = result.get('viva_state')
# return jsonify(result)
# except Exception as e:
# print(f"Error in /chat endpoint: {e}")
# return jsonify({'success': False, 'error': f'Server error: {str(e)}'}), 500
# @app.route('/upload', methods=['POST'])
# def upload_file():
# """Handles file uploads."""
# if 'file' not in request.files:
# return jsonify({'success': False, 'error': 'No file part'}), 400
# file = request.files['file']
# if file.filename == '':
# return jsonify({'success': False, 'error': 'No selected file'}), 400
# if file and allowed_file(file.filename):
# filename = secure_filename(file.filename)
# file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
# file.save(file_path)
# if 'uploaded_files' not in session:
# session['uploaded_files'] = []
# file_info = {'original_name': filename, 'path': file_path}
# session['uploaded_files'].append(file_info)
# session.modified = True
# return jsonify({
# 'success': True,
# 'message': f'File "{filename}" uploaded. You can now ask questions about it.',
# 'files': session['uploaded_files']
# })
# return jsonify({'success': False, 'error': 'File type not allowed'}), 400
# @app.route('/files', methods=['GET'])
# def get_uploaded_files():
# """Returns the list of uploaded files from the session."""
# return jsonify({'files': session.get('uploaded_files', [])})
# @app.route('/clear_files', methods=['POST'])
# def clear_files():
# """Deletes uploaded files from disk and clears them from the session."""
# if 'uploaded_files' in session:
# for file_info in session['uploaded_files']:
# if os.path.exists(file_info['path']):
# os.remove(file_info['path'])
# session.pop('uploaded_files', None)
# session.pop('viva_state', None) # Also clear viva state
# return jsonify({'success': True, 'message': 'All files and sessions cleared.'})
# @app.route('/quote')
# def get_quote():
# """Returns a new random quote."""
# return jsonify({'quote': pharma_ai.get_daily_quote()})
# # --- Main Execution ---
# # if __name__ == '__main__':
# # # Ensure all necessary directories exist
# # for directory in ['data', 'static/css', 'static/js', 'templates', 'agents', 'utils', 'uploads']:
# # os.makedirs(directory, exist_ok=True)
# # print("🇮🇳 MyPharma AI Starting...")
# # print(f"🤖 Gemini API Status: {'✅ Ready' if model else '❌ Not configured'}")
# # print("🚀 Server starting on http://127.0.0.1:5000")
# # app.run(debug=True, port=5000)
# if __name__ == '__main__':
# # Create necessary directories (this is good practice)
# for directory in ['data', 'uploads', 'templates']:
# os.makedirs(directory, exist_ok=True)
# # Get port from environment variable, defaulting to 5000 for local testing
# port = int(os.environ.get('PORT', 7860))
# print("🇮🇳 MyPharma AI Starting...")
# print(f"🤖 Gemini API Status: {'✅ Ready' if model else '❌ Not configured'}")
# print(f"🚀 Server starting on http://0.0.0.0:{port}")
# # Run the app to be accessible on the server
# app.run(host='0.0.0.0', port=port)
# app.py
import os
import random
from dotenv import load_dotenv
from flask import Flask, render_template, request, jsonify, session
import google.generativeai as genai
# Import new langchain components and our helpers
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_community.vectorstores import FAISS
from utils.helpers import create_vector_store, get_greeting, load_quotes
from agents.router_agent import RouterAgent # Re-import the RouterAgent
# --- Initial Setup ---
load_dotenv()
# Create the knowledge library on first startup if it doesn't exist
create_vector_store()
# --- App Configuration ---
app = Flask(__name__)
app.config['SECRET_KEY'] = os.getenv('FLASK_SECRET_KEY', 'a-very-secret-key-for-dev')
# --- Gemini API & Knowledge Base Configuration ---
model = None
vector_store = None
try:
GEMINI_API_KEY = os.getenv('GOOGLE_API_KEY')
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-1.5-flash')
index_path = '/tmp/faiss_index'
if os.path.exists(index_path):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector_store = FAISS.load_local(index_path, embeddings, allow_dangerous_deserialization=True)
print("✅ Gemini Model and Knowledge Base loaded successfully!")
else:
print("✅ Gemini Model loaded. No knowledge base found to load.")
else:
print("⚠️ No Gemini API key found.")
except Exception as e:
print(f"❌ Error during initialization: {e}")
# --- Main AI Application Class (Reinstated) ---
class MyPharmaAI:
def __init__(self, gemini_model, vector_store_db):
self.router = RouterAgent(gemini_model)
self.quotes = load_quotes()
self.vector_store = vector_store_db
def process_query(self, query, viva_state, chat_history):
# This is the core logic that combines both systems:
# 1. Search the permanent knowledge base for context.
file_context = ""
if self.vector_store:
relevant_docs = self.vector_store.similarity_search(query, k=4) # Get top 4 results
file_context = "\n".join(doc.page_content for doc in relevant_docs)
context_with_sources = []
for doc in relevant_docs:
# Clean up the source path to just the filename
source_filename = os.path.basename(doc.metadata.get('source', 'Unknown Source'))
# Page numbers from PyPDF are 0-indexed, so we add 1 for readability
page_number = doc.metadata.get('page', -1) + 1
context_with_sources.append(
f"[Source: {source_filename}, Page: {page_number}]\n{doc.page_content}"
)
file_context = "\n\n".join(context_with_sources)
# 2. Pass the retrieved context to the multi-agent router system.
return self.router.route_query(query, file_context, viva_state, chat_history)
pharma_ai = MyPharmaAI(model, vector_store)
# --- Flask Routes ---
@app.route('/')
def index():
# Use the correct template name
return render_template('index.html', greeting=get_greeting(), daily_quote=random.choice(pharma_ai.quotes))
@app.route('/chat', methods=['POST'])
def chat():
# This function is now the final, stable version.
try:
data = request.get_json()
query = data.get('query', '').strip()
if not query:
return jsonify({'success': False, 'error': 'Empty query'}), 400
chat_history = session.get('chat_history', [])
viva_state = session.get('viva_state', None)
# Get the result dictionary from the agent system
agent_result = pharma_ai.process_query(query, viva_state, chat_history)
# --- THIS IS THE FIX ---
# We now build the final JSON response to match what the JavaScript expects.
if "error" in agent_result.get('status', ''):
final_response = {
'success': False,
'error': agent_result.get('message', 'An unknown error occurred.'),
'agent_used': agent_result.get('agent_used', 'error')
}
else:
final_response = {
'success': True,
'message': agent_result.get('message', 'Sorry, I could not generate a response.'),
'agent_used': agent_result.get('agent_used', 'academic')
}
# --- END OF FIX ---
# Update chat history if the call was successful
if final_response.get('success'):
chat_history.append({'role': 'user', 'parts': [query]})
chat_history.append({'role': 'model', 'parts': [final_response.get('message', '')]})
session['chat_history'] = chat_history[-10:]
# Handle Viva state if present (no changes needed here)
if 'viva_state' in agent_result:
session['viva_state'] = agent_result.get('viva_state')
return jsonify(final_response)
except Exception as e:
print(f"Critical Error in /chat endpoint: {e}")
return jsonify({'success': False, 'error': f'A critical server error occurred: {e}', 'agent_used': 'error'}), 500
# --- Main Execution ---
if __name__ == '__main__':
# app.run(host='127.0.0.1', port=5000, debug=True)
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port)