Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import tiktoken
|
4 |
import anthropic
|
5 |
-
#import os
|
6 |
|
7 |
def process_csv(file, calculate_openai, openai_model, calculate_anthropic, anthropic_model):
|
8 |
# Check if file is uploaded
|
@@ -27,7 +27,10 @@ def process_csv(file, calculate_openai, openai_model, calculate_anthropic, anthr
|
|
27 |
openai_encoding = tiktoken.get_encoding("cl100k_base")
|
28 |
|
29 |
token_counts_openai = {}
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
# Iterate over columns
|
33 |
for col in df.columns:
|
@@ -43,7 +46,7 @@ def process_csv(file, calculate_openai, openai_model, calculate_anthropic, anthr
|
|
43 |
#total_tokens_openai += tokens_openai
|
44 |
|
45 |
# Prepare OpenAI output
|
46 |
-
output += f"**Total OpenAI Tokens ({openai_model}): {total_tokens_openai}**\n"
|
47 |
output += f"\n**OpenAI Token Counts per Column ({openai_model}):**\n\n"
|
48 |
for col, count in token_counts_openai.items():
|
49 |
output += f"- {col}: {count} tokens\n"
|
@@ -57,24 +60,39 @@ def process_csv(file, calculate_openai, openai_model, calculate_anthropic, anthr
|
|
57 |
|
58 |
# Initialize the Anthropic client
|
59 |
#client = anthropic.Anthropic(api_key=anthropic_api_key)
|
60 |
-
|
61 |
-
try:
|
62 |
-
client = anthropic.Anthropic()
|
63 |
-
print("Anthropic client initialized successfully")
|
64 |
-
except Exception as e:
|
65 |
-
return f"Error initializing Anthropic client: {e}"
|
66 |
|
67 |
token_counts_anthropic = {}
|
|
|
68 |
try:
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
except Exception as e:
|
71 |
-
return f"Error counting tokens with Anthropic model
|
|
|
72 |
|
73 |
# Iterate over columns
|
74 |
for col in df.columns:
|
75 |
#tokens_col_anthropic = 0
|
76 |
try:
|
77 |
-
tokens_anthropic = client.count_tokens('\n'.join([col]+list(df[col].astype(str).values)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
except Exception as e:
|
79 |
return f"Error counting tokens with Anthropic model: {e}"
|
80 |
# for cell in df[col].astype(str):
|
@@ -87,7 +105,7 @@ def process_csv(file, calculate_openai, openai_model, calculate_anthropic, anthr
|
|
87 |
#total_tokens_anthropic += tokens_anthropic
|
88 |
|
89 |
# Prepare Anthropic output
|
90 |
-
output += f"**Total Anthropic Tokens ({anthropic_model}): {total_tokens_anthropic}**\n"
|
91 |
output += f"\n**Anthropic Token Counts per Column ({anthropic_model}):**\n"
|
92 |
for col, count in token_counts_anthropic.items():
|
93 |
output += f"- {col}: {count} tokens\n"
|
@@ -102,6 +120,10 @@ def main():
|
|
102 |
with gr.Blocks() as demo:
|
103 |
gr.Markdown("# Token Counter")
|
104 |
gr.Markdown("Upload a CSV file to see token counts per column and total tokens.")
|
|
|
|
|
|
|
|
|
105 |
|
106 |
with gr.Row():
|
107 |
file_input = gr.File(label="Upload CSV File", type="filepath")
|
@@ -117,7 +139,7 @@ def main():
|
|
117 |
visible=False
|
118 |
)
|
119 |
anthropic_model = gr.Dropdown(
|
120 |
-
choices=['claude-3-5-sonnet-latest', 'claude-3-5-haiku-latest', 'claude-3-opus-latest'],
|
121 |
label="Select Anthropic Model",
|
122 |
visible=False
|
123 |
)
|
@@ -137,7 +159,8 @@ def main():
|
|
137 |
inputs = [file_input, calculate_openai, openai_model, calculate_anthropic, anthropic_model]
|
138 |
submit_button.click(fn=process_csv, inputs=inputs, outputs=output)
|
139 |
|
140 |
-
demo.launch(share=True)
|
|
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
main()
|
|
|
1 |
import gradio as gr
|
2 |
+
import json
|
3 |
import pandas as pd
|
4 |
import tiktoken
|
5 |
import anthropic
|
|
|
6 |
|
7 |
def process_csv(file, calculate_openai, openai_model, calculate_anthropic, anthropic_model):
|
8 |
# Check if file is uploaded
|
|
|
27 |
openai_encoding = tiktoken.get_encoding("cl100k_base")
|
28 |
|
29 |
token_counts_openai = {}
|
30 |
+
try:
|
31 |
+
total_tokens_openai = len(openai_encoding.encode(df.to_csv(index=False)))
|
32 |
+
except Exception as e:
|
33 |
+
return f"Error counting tokens with OpenAI model: {e}"
|
34 |
|
35 |
# Iterate over columns
|
36 |
for col in df.columns:
|
|
|
46 |
#total_tokens_openai += tokens_openai
|
47 |
|
48 |
# Prepare OpenAI output
|
49 |
+
output += f"\n**Total OpenAI Tokens ({openai_model}): {total_tokens_openai}**\n"
|
50 |
output += f"\n**OpenAI Token Counts per Column ({openai_model}):**\n\n"
|
51 |
for col, count in token_counts_openai.items():
|
52 |
output += f"- {col}: {count} tokens\n"
|
|
|
60 |
|
61 |
# Initialize the Anthropic client
|
62 |
#client = anthropic.Anthropic(api_key=anthropic_api_key)
|
63 |
+
client = anthropic.Anthropic()
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
token_counts_anthropic = {}
|
66 |
+
#total_tokens_anthropic = client.count_tokens(df.to_csv(index=False))
|
67 |
try:
|
68 |
+
response = client.beta.messages.count_tokens(
|
69 |
+
betas=["token-counting-2024-11-01"],
|
70 |
+
model=anthropic_model, #"claude-3-5-sonnet-20241022",
|
71 |
+
#system="You are a scientist",
|
72 |
+
messages=[{
|
73 |
+
"role": "user",
|
74 |
+
"content": df.to_csv(index=False)
|
75 |
+
}],
|
76 |
+
)
|
77 |
+
total_tokens_anthropic = json.loads(response.json())['input_tokens']
|
78 |
except Exception as e:
|
79 |
+
return f"Error counting tokens with Anthropic model: {e}"
|
80 |
+
|
81 |
|
82 |
# Iterate over columns
|
83 |
for col in df.columns:
|
84 |
#tokens_col_anthropic = 0
|
85 |
try:
|
86 |
+
#tokens_anthropic = client.count_tokens('\n'.join([col]+list(df[col].astype(str).values))) #0.37.1 version
|
87 |
+
response = client.beta.messages.count_tokens(
|
88 |
+
betas=["token-counting-2024-11-01"],
|
89 |
+
model=anthropic_model,
|
90 |
+
messages=[{
|
91 |
+
"role": "user",
|
92 |
+
"content": '\n'.join([col]+list(df[col].astype(str).values))
|
93 |
+
}],
|
94 |
+
)
|
95 |
+
tokens_anthropic = json.loads(response.json())['input_tokens']
|
96 |
except Exception as e:
|
97 |
return f"Error counting tokens with Anthropic model: {e}"
|
98 |
# for cell in df[col].astype(str):
|
|
|
105 |
#total_tokens_anthropic += tokens_anthropic
|
106 |
|
107 |
# Prepare Anthropic output
|
108 |
+
output += f"\n**Total Anthropic Tokens ({anthropic_model}): {total_tokens_anthropic}**\n"
|
109 |
output += f"\n**Anthropic Token Counts per Column ({anthropic_model}):**\n"
|
110 |
for col, count in token_counts_anthropic.items():
|
111 |
output += f"- {col}: {count} tokens\n"
|
|
|
120 |
with gr.Blocks() as demo:
|
121 |
gr.Markdown("# Token Counter")
|
122 |
gr.Markdown("Upload a CSV file to see token counts per column and total tokens.")
|
123 |
+
gr.Markdown("""
|
124 |
+
For OpenAI models Python package `tiktoken` is used.
|
125 |
+
For Anthropic models beta version of [Token counting](https://docs.anthropic.com/en/docs/build-with-claude/token-counting) is used.
|
126 |
+
""")
|
127 |
|
128 |
with gr.Row():
|
129 |
file_input = gr.File(label="Upload CSV File", type="filepath")
|
|
|
139 |
visible=False
|
140 |
)
|
141 |
anthropic_model = gr.Dropdown(
|
142 |
+
choices=['claude-3-5-sonnet-latest', 'claude-3-5-haiku-latest', 'claude-3-opus-latest', 'claude-3-haiku-20240307'],
|
143 |
label="Select Anthropic Model",
|
144 |
visible=False
|
145 |
)
|
|
|
159 |
inputs = [file_input, calculate_openai, openai_model, calculate_anthropic, anthropic_model]
|
160 |
submit_button.click(fn=process_csv, inputs=inputs, outputs=output)
|
161 |
|
162 |
+
#demo.launch(share=True)
|
163 |
+
demo.launch()
|
164 |
|
165 |
if __name__ == "__main__":
|
166 |
main()
|