Spaces:
Runtime error
Runtime error
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) | |
# | |
# See ../LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import contextlib | |
import logging | |
from collections import defaultdict | |
from typing import List | |
from typing import Tuple | |
import torch | |
from torch import Tensor | |
from torch.optim import Optimizer | |
class BatchedOptimizer(Optimizer): | |
""" | |
This class adds to class Optimizer the capability to optimize parameters in batches: | |
it will stack the parameters and their grads for you so the optimizer can work | |
on tensors with an extra leading dimension. This is intended for speed with GPUs, | |
as it reduces the number of kernels launched in the optimizer. | |
Args: | |
params: | |
""" | |
def __init__(self, params, defaults): | |
super(BatchedOptimizer, self).__init__(params, defaults) | |
def batched_params(self, param_group, group_params_names): | |
""" | |
This function returns (technically, yields) a list of | |
of tuples (p, state), where | |
p is a `fake` parameter that is stacked (over axis 0) from real parameters | |
that share the same shape, and its gradient is also stacked; | |
`state` is the state corresponding to this batch of parameters | |
(it will be physically located in the "state" for one of the real | |
parameters, the last one that has any particular shape and dtype). | |
This function is decorated as a context manager so that it can | |
write parameters back to their "real" locations. | |
The idea is, instead of doing: | |
<code> | |
for p in group["params"]: | |
state = self.state[p] | |
... | |
</code> | |
you can do: | |
<code> | |
with self.batched_params(group["params"]) as batches: | |
for p, state, p_names in batches: | |
... | |
</code> | |
Args: | |
group: a parameter group, which is a list of parameters; should be | |
one of self.param_groups. | |
group_params_names: name for each parameter in group, | |
which is List[str]. | |
""" | |
batches = defaultdict( | |
list | |
) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter | |
batches_names = defaultdict( | |
list | |
) # `batches` maps from tuple (dtype_as_str,*shape) to list of str | |
assert len(param_group) == len(group_params_names) | |
for p, named_p in zip(param_group, group_params_names): | |
key = (str(p.dtype), *p.shape) | |
batches[key].append(p) | |
batches_names[key].append(named_p) | |
batches_names_keys = list(batches_names.keys()) | |
sorted_idx = sorted( | |
range(len(batches_names)), key=lambda i: batches_names_keys[i]) | |
batches_names = [ | |
batches_names[batches_names_keys[idx]] for idx in sorted_idx | |
] | |
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx] | |
stacked_params_dict = dict() | |
# turn batches into a list, in deterministic order. | |
# tuples will contain tuples of (stacked_param, state, stacked_params_names), | |
# one for each batch in `batches`. | |
tuples = [] | |
for batch, batch_names in zip(batches, batches_names): | |
p = batch[0] | |
# we arbitrarily store the state in the | |
# state corresponding to the 1st parameter in the | |
# group. class Optimizer will take care of saving/loading state. | |
state = self.state[p] | |
p_stacked = torch.stack(batch) | |
grad = torch.stack([ | |
torch.zeros_like(p) if p.grad is None else p.grad for p in batch | |
]) | |
p_stacked.grad = grad | |
stacked_params_dict[key] = p_stacked | |
tuples.append((p_stacked, state, batch_names)) | |
yield tuples # <-- calling code will do the actual optimization here! | |
for ((stacked_params, _state, _names), batch) in zip(tuples, batches): | |
for i, p in enumerate(batch): # batch is list of Parameter | |
p.copy_(stacked_params[i]) | |
class ScaledAdam(BatchedOptimizer): | |
""" | |
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update | |
proportional to the norm of that parameter; and also learn the scale of the parameter, | |
in log space, subject to upper and lower limits (as if we had factored each parameter as | |
param = underlying_param * log_scale.exp()) | |
Args: | |
params: The parameters or param_groups to optimize (like other Optimizer subclasses) | |
lr: The learning rate. We will typically use a learning rate schedule that starts | |
at 0.03 and decreases over time, i.e. much higher than other common | |
optimizers. | |
clipping_scale: (e.g. 2.0) | |
A scale for gradient-clipping: if specified, the normalized gradients | |
over the whole model will be clipped to have 2-norm equal to | |
`clipping_scale` times the median 2-norm over the most recent period | |
of `clipping_update_period` minibatches. By "normalized gradients", | |
we mean after multiplying by the rms parameter value for this tensor | |
[for non-scalars]; this is appropriate because our update is scaled | |
by this quantity. | |
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad. | |
Must satisfy 0 < beta <= beta2 < 1. | |
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the | |
scale of each parameter tensor and scalar parameters of the mode.. | |
If each parameter were decomposed | |
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale | |
would be a the scaling factor on the learning rate of p_scale. | |
eps: A general-purpose epsilon to prevent division by zero | |
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of | |
learning the scale on the parameters (we'll constrain the rms of each non-scalar | |
parameter tensor to be >= this value) | |
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of | |
learning the scale on the parameters (we'll constrain the rms of each non-scalar | |
parameter tensor to be <= this value) | |
scalar_max: Maximum absolute value for scalar parameters (applicable if your | |
model has any parameters with numel() == 1). | |
size_update_period: The periodicity, in steps, with which we update the size (scale) | |
of the parameter tensor. This is provided to save a little time | |
in the update. | |
clipping_update_period: if clipping_scale is specified, this is the period | |
""" | |
def __init__( | |
self, | |
params, | |
lr=3e-02, | |
clipping_scale=None, | |
betas=(0.9, 0.98), | |
scalar_lr_scale=0.1, | |
eps=1.0e-08, | |
param_min_rms=1.0e-05, | |
param_max_rms=3.0, | |
scalar_max=10.0, | |
size_update_period=4, | |
clipping_update_period=100, | |
parameters_names=None, | |
show_dominant_parameters=True, ): | |
assert parameters_names is not None, ( | |
"Please prepare parameters_names," | |
"which is a List[List[str]]. Each List[str] is for a group" | |
"and each str is for a parameter") | |
defaults = dict( | |
lr=lr, | |
clipping_scale=clipping_scale, | |
betas=betas, | |
scalar_lr_scale=scalar_lr_scale, | |
eps=eps, | |
param_min_rms=param_min_rms, | |
param_max_rms=param_max_rms, | |
scalar_max=scalar_max, | |
size_update_period=size_update_period, | |
clipping_update_period=clipping_update_period, ) | |
super(ScaledAdam, self).__init__(params, defaults) | |
assert len(self.param_groups) == len(parameters_names) | |
self.parameters_names = parameters_names | |
self.show_dominant_parameters = show_dominant_parameters | |
def __setstate__(self, state): | |
super(ScaledAdam, self).__setstate__(state) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
batch = True | |
for group, group_params_names in zip(self.param_groups, | |
self.parameters_names): | |
with self.batched_params(group["params"], | |
group_params_names) as batches: | |
# batches is list of pairs (stacked_param, state). stacked_param is like | |
# a regular parameter, and will have a .grad, but the 1st dim corresponds to | |
# a stacking dim, it is not a real dim. | |
if (len(batches[0][1]) == | |
0): # if len(first state) == 0: not yet initialized | |
clipping_scale = 1 | |
else: | |
clipping_scale = self._get_clipping_scale(group, batches) | |
for p, state, _ in batches: | |
# Perform optimization step. | |
# grad is not going to be None, we handled that when creating the batches. | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError( | |
"ScaledAdam optimizer does not support sparse gradients" | |
) | |
# State initialization | |
if len(state) == 0: | |
self._init_state(group, p, state) | |
self._step_one_batch(group, p, state, clipping_scale) | |
return loss | |
def _init_state(self, group: dict, p: Tensor, state: dict): | |
""" | |
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p | |
is actually the batch dimension, corresponding to batched-together | |
parameters of a given shape. | |
Args: | |
group: Dict to look up configuration values. | |
p: The parameter that we are initializing the state for | |
state: Dict from string to whatever state we are initializing | |
""" | |
size_update_period = group["size_update_period"] | |
state["step"] = 0 | |
kwargs = {"device": p.device, "dtype": p.dtype} | |
# 'delta' implements conventional momentum. There are | |
# several different kinds of update going on, so rather than | |
# compute "exp_avg" like in Adam, we store and decay a | |
# parameter-change "delta", which combines all forms of | |
# update. this is equivalent to how it's done in Adam, | |
# except for the first few steps. | |
state["delta"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format) | |
batch_size = p.shape[0] | |
numel = p.numel() // batch_size | |
numel = p.numel() | |
if numel > 1: | |
# "param_rms" just periodically records the scalar root-mean-square value of | |
# the parameter tensor. | |
# it has a shape like (batch_size, 1, 1, 1, 1) | |
param_rms = ( | |
(p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()) | |
state["param_rms"] = param_rms | |
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms) | |
state["scale_grads"] = torch.zeros(size_update_period, | |
*param_rms.shape, **kwargs) | |
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam. | |
state["exp_avg_sq"] = torch.zeros_like( | |
p, memory_format=torch.preserve_format) | |
def _get_clipping_scale(self, | |
group: dict, | |
tuples: List[Tuple[Tensor, dict, List[str]]] | |
) -> float: | |
""" | |
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients | |
by this amount before applying the rest of the update. | |
Args: | |
group: the parameter group, an item in self.param_groups | |
tuples: a list of tuples of (param, state, param_names) | |
where param is a batched set of parameters, | |
with a .grad (1st dim is batch dim) | |
and state is the state-dict where optimization parameters are kept. | |
param_names is a List[str] while each str is name for a parameter | |
in batched set of parameters "param". | |
""" | |
assert len(tuples) >= 1 | |
clipping_scale = group["clipping_scale"] | |
(first_p, first_state, _) = tuples[0] | |
step = first_state["step"] | |
if clipping_scale is None or step == 0: | |
# no clipping. return early on step == 0 because the other | |
# parameters' state won't have been initialized yet. | |
return 1.0 | |
clipping_update_period = group["clipping_update_period"] | |
tot_sumsq = torch.tensor(0.0, device=first_p.device) | |
for (p, state, param_names) in tuples: | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError( | |
"ScaledAdam optimizer does not support sparse gradients") | |
if p.numel() == p.shape[0]: # a batch of scalars | |
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to [] | |
else: | |
tot_sumsq += ((grad * state["param_rms"])**2).sum() | |
tot_norm = tot_sumsq.sqrt() | |
if "model_norms" not in first_state: | |
first_state["model_norms"] = torch.zeros( | |
clipping_update_period, device=p.device) | |
first_state["model_norms"][step % clipping_update_period] = tot_norm | |
if step % clipping_update_period == 0: | |
# Print some stats. | |
# We don't reach here if step == 0 because we would have returned | |
# above. | |
sorted_norms = first_state["model_norms"].sort()[0].to("cpu") | |
quartiles = [] | |
for n in range(0, 5): | |
index = min( | |
clipping_update_period - 1, | |
(clipping_update_period // 4) * n, ) | |
quartiles.append(sorted_norms[index].item()) | |
median = quartiles[2] | |
threshold = clipping_scale * median | |
first_state["model_norm_threshold"] = threshold | |
percent_clipped = (first_state["num_clipped"] * 100.0 / | |
clipping_update_period | |
if "num_clipped" in first_state else 0.0) | |
first_state["num_clipped"] = 0 | |
quartiles = " ".join(["%.3e" % x for x in quartiles]) | |
logging.info( | |
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, " | |
f"threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}" | |
) | |
if step < clipping_update_period: | |
return 1.0 # We have not yet estimated a norm to clip to. | |
else: | |
try: | |
model_norm_threshold = first_state["model_norm_threshold"] | |
except KeyError: | |
logging.info( | |
"Warning: model_norm_threshold not in state: possibly " | |
"you changed config when restarting, adding clipping_scale option?" | |
) | |
return 1.0 | |
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item()) | |
if ans < 1.0: | |
first_state["num_clipped"] += 1 | |
if ans < 0.1: | |
logging.warn( | |
f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}" | |
) | |
if self.show_dominant_parameters: | |
assert p.shape[0] == len(param_names) | |
self._show_gradient_dominating_parameter(tuples, tot_sumsq) | |
return ans | |
def _show_gradient_dominating_parameter( | |
self, tuples: List[Tuple[Tensor, dict, List[str]]], | |
tot_sumsq: Tensor): | |
""" | |
Show information of parameter wihch dominanting tot_sumsq. | |
Args: | |
tuples: a list of tuples of (param, state, param_names) | |
where param is a batched set of parameters, | |
with a .grad (1st dim is batch dim) | |
and state is the state-dict where optimization parameters are kept. | |
param_names is a List[str] while each str is name for a parameter | |
in batched set of parameters "param". | |
tot_sumsq: sumsq of all parameters. Though it's could be calculated | |
from tuples, we still pass it to save some time. | |
""" | |
all_sumsq_orig = {} | |
for (p, state, batch_param_names) in tuples: | |
# p is a stacked batch parameters. | |
batch_grad = p.grad | |
if p.numel() == p.shape[0]: # a batch of scalars | |
batch_sumsq_orig = batch_grad**2 | |
# Dummpy values used by following `zip` statement. | |
batch_rms_orig = torch.ones(p.shape[0]) | |
else: | |
batch_rms_orig = state["param_rms"] | |
batch_sumsq_orig = ((batch_grad * batch_rms_orig)**2).sum( | |
dim=list(range(1, batch_grad.ndim))) | |
for name, sumsq_orig, rms, grad in zip(batch_param_names, | |
batch_sumsq_orig, | |
batch_rms_orig, batch_grad): | |
proportion_orig = sumsq_orig / tot_sumsq | |
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad) | |
assert torch.isclose( | |
sum([value[0] for value in all_sumsq_orig.values()]).cpu(), | |
torch.tensor(1.0), ) | |
sorted_by_proportion = { | |
k: v | |
for k, v in sorted( | |
all_sumsq_orig.items(), | |
key=lambda item: item[1][0], | |
reverse=True, ) | |
} | |
dominant_param_name = next(iter(sorted_by_proportion)) | |
(dominant_proportion, dominant_sumsq, dominant_rms, | |
dominant_grad, ) = sorted_by_proportion[dominant_param_name] | |
logging.info(f"Parameter Dominanting tot_sumsq {dominant_param_name}" | |
f" with proportion {dominant_proportion:.2f}," | |
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)" | |
f"={dominant_sumsq:.3e}," | |
f" grad_sumsq = {(dominant_grad**2).sum():.3e}," | |
f" orig_rms_sq={(dominant_rms**2).item():.3e}") | |
def _step_one_batch(self, | |
group: dict, | |
p: Tensor, | |
state: dict, | |
clipping_scale: float): | |
""" | |
Do the step for one parameter, which is actually going to be a batch of | |
`real` parameters, with dim 0 as the batch dim. | |
Args: | |
group: dict to look up configuration values | |
p: parameter to update (actually multiple parameters stacked together | |
as a batch) | |
state: state-dict for p, to look up the optimizer state | |
""" | |
lr = group["lr"] | |
size_update_period = group["size_update_period"] | |
beta1 = group["betas"][0] | |
grad = p.grad | |
if clipping_scale != 1.0: | |
grad = grad * clipping_scale | |
step = state["step"] | |
delta = state["delta"] | |
delta.mul_(beta1) | |
batch_size = p.shape[0] | |
numel = p.numel() // batch_size | |
if numel > 1: | |
# Update the size/scale of p, and set param_rms | |
scale_grads = state["scale_grads"] | |
scale_grads[step % size_update_period] = (p * grad).sum( | |
dim=list(range(1, p.ndim)), keepdim=True) | |
if step % size_update_period == size_update_period - 1: | |
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..) | |
param_rms.copy_((p**2) | |
.mean(dim=list(range(1, p.ndim)), keepdim=True) | |
.sqrt()) | |
if step > 0: | |
# self._size_update() learns the overall scale on the | |
# parameter, by shrinking or expanding it. | |
self._size_update(group, scale_grads, p, state) | |
if numel == 1: | |
# For parameters with 1 element we just use regular Adam. | |
# Updates delta. | |
self._step_scalar(group, p, state) | |
else: | |
self._step(group, p, state) | |
state["step"] = step + 1 | |
def _size_update(self, | |
group: dict, | |
scale_grads: Tensor, | |
p: Tensor, | |
state: dict) -> None: | |
""" | |
Called only where p.numel() > 1, this updates the scale of the parameter. | |
If we imagine: p = underlying_param * scale.exp(), and we are doing | |
gradient descent on underlying param and on scale, this function does the update | |
on `scale`. | |
Args: | |
group: dict to look up configuration values | |
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing | |
grads w.r.t. the scales. | |
p: The parameter to update | |
state: The state-dict of p | |
""" | |
param_rms = state["param_rms"] | |
beta1, beta2 = group["betas"] | |
size_lr = group["lr"] * group["scalar_lr_scale"] | |
param_min_rms = group["param_min_rms"] | |
param_max_rms = group["param_max_rms"] | |
eps = group["eps"] | |
step = state["step"] | |
batch_size = p.shape[0] | |
size_update_period = scale_grads.shape[0] | |
# correct beta2 for the size update period: we will have | |
# faster decay at this level. | |
beta2_corr = beta2**size_update_period | |
scale_exp_avg_sq = state[ | |
"scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..) | |
scale_exp_avg_sq.mul_(beta2_corr).add_( | |
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period` | |
alpha=1 - beta2_corr, ) # shape is (batch_size, 1, 1, ...) | |
# The 1st time we reach here is when size_step == 1. | |
size_step = (step + 1) // size_update_period | |
bias_correction2 = 1 - beta2_corr**size_step | |
# we don't bother with bias_correction1; this will help prevent divergence | |
# at the start of training. | |
denom = scale_exp_avg_sq.sqrt() + eps | |
scale_step = (-size_lr * (bias_correction2**0.5) * | |
scale_grads.sum(dim=0) / denom) | |
is_too_small = param_rms < param_min_rms | |
is_too_large = param_rms > param_max_rms | |
# when the param gets too small, just don't shrink it any further. | |
scale_step.masked_fill_(is_too_small, 0.0) | |
# when it gets too large, stop it from getting any larger. | |
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period) | |
delta = state["delta"] | |
# the factor of (1-beta1) relates to momentum. | |
delta.add_(p * scale_step, alpha=(1 - beta1)) | |
def _step(self, group: dict, p: Tensor, state: dict): | |
""" | |
This function does the core update of self.step(), in the case where the members of | |
the batch have more than 1 element. | |
Args: | |
group: A dict which will be used to look up configuration values | |
p: The parameter to be updated | |
grad: The grad of p | |
state: The state-dict corresponding to parameter p | |
This function modifies p. | |
""" | |
grad = p.grad | |
lr = group["lr"] | |
beta1, beta2 = group["betas"] | |
eps = group["eps"] | |
param_min_rms = group["param_min_rms"] | |
step = state["step"] | |
exp_avg_sq = state["exp_avg_sq"] | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2)) | |
this_step = state["step"] - (state["zero_step"] | |
if "zero_step" in state else 0) | |
bias_correction2 = 1 - beta2**(this_step + 1) | |
if bias_correction2 < 0.99: | |
# note: not in-place. | |
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2) | |
denom = exp_avg_sq.sqrt() | |
denom += eps | |
grad = grad / denom | |
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms) | |
delta = state["delta"] | |
delta.add_(grad * alpha) | |
p.add_(delta) | |
def _step_scalar(self, group: dict, p: Tensor, state: dict): | |
""" | |
A simplified form of the core update for scalar tensors, where we cannot get a good | |
estimate of the parameter rms. | |
""" | |
beta1, beta2 = group["betas"] | |
scalar_max = group["scalar_max"] | |
eps = group["eps"] | |
lr = group["lr"] * group["scalar_lr_scale"] | |
grad = p.grad | |
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
# bias_correction2 is like in Adam. Don't bother with bias_correction1; | |
# slower update at the start will help stability anyway. | |
bias_correction2 = 1 - beta2**(state["step"] + 1) | |
denom = (exp_avg_sq / bias_correction2).sqrt() + eps | |
delta = state["delta"] | |
delta.add_(grad / denom, alpha=-lr * (1 - beta1)) | |
p.clamp_(min=-scalar_max, max=scalar_max) | |
p.add_(delta) | |