|
import sys, os |
|
import torch |
|
import argparse |
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import cleaned_text_to_sequence, get_bert |
|
from text.cleaner import clean_text |
|
import gradio as gr |
|
import soundfile as sf |
|
from datetime import datetime |
|
import pytz |
|
|
|
|
|
net_g = None |
|
models = { |
|
"DLM 德拉曼": "./MODELS/DLM.pth", |
|
"HeavyHammer 重锤": "./MODELS/hammer.pth", |
|
"ArasakaAI 荒坂AI": "./MODELS/Arasaka.pth", |
|
"BadDLMGirl 德拉曼女儿": "./MODELS/BG1300.pth", |
|
"BadDLMBoy 德拉曼儿子": "./MODELS/BAD1100.pth", |
|
"Silverleg": "./MODELS/J8900.pth", |
|
"Rokuro": "./MODELS/take2.pth", |
|
} |
|
|
|
def get_text(text, language_str, hps): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = get_bert(norm_text, word2ph, language_str) |
|
del word2ph |
|
|
|
assert bert.shape[-1] == len(phone) |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
|
|
return bert, phone, tone, language |
|
|
|
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir): |
|
global net_g |
|
bert, phones, tones, lang_ids = get_text(text, "ZH", hps) |
|
with torch.no_grad(): |
|
x_tst=phones.to(device).unsqueeze(0) |
|
tones=tones.to(device).unsqueeze(0) |
|
lang_ids=lang_ids.to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) |
|
del phones |
|
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) |
|
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio |
|
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() |
|
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers |
|
sf.write("tmp.wav", audio, 44100) |
|
return audio |
|
tz = pytz.timezone('Asia/Shanghai') |
|
|
|
def convert_wav_to_mp3(wav_file): |
|
global tz |
|
now = datetime.now(tz).strftime('%m%d%H%M%S') |
|
os.makedirs('out', exist_ok=True) |
|
output_path_mp3 = os.path.join('out', f"{now}.mp3") |
|
|
|
renamed_input_path = os.path.join('in', f"in.wav") |
|
os.makedirs('in', exist_ok=True) |
|
os.rename(wav_file.name, renamed_input_path) |
|
command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3] |
|
os.system(" ".join(command)) |
|
return output_path_mp3 |
|
|
|
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model): |
|
global net_g,speakers,tz |
|
now = datetime.now(tz).strftime('%m-%d %H:%M:%S') |
|
model_path = models[model] |
|
net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) |
|
print(now+text) |
|
text = text[:500] |
|
try: |
|
with torch.no_grad(): |
|
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model) |
|
with open('tmp.wav', 'rb') as wav_file: |
|
mp3 = convert_wav_to_mp3(wav_file) |
|
return "生成语音成功", (hps.data.sampling_rate, audio), mp3 |
|
except Exception as e: |
|
return "生成语音失败:" + str(e), None, None |
|
|
|
|
|
if __name__ == "__main__": |
|
hps = utils.get_hparams_from_file("./configs/config.json") |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model).to(device) |
|
_ = net_g.eval() |
|
|
|
speaker_ids = hps.data.spk2id |
|
speaker = list(speaker_ids.keys())[0] |
|
theme='remilia/Ghostly' |
|
|
|
with gr.Blocks(theme=theme) as app: |
|
with gr.Column(): |
|
with gr.Column(): |
|
|
|
gr.Markdown("""**仅供测试,勿滥用**\n |
|
模型训练以及推理基于开源项目Bert-VITS2:https://github.com/fishaudio/Bert-VITS2\n |
|
Gradio Theme:remilia/Ghostly""") |
|
text = gr.TextArea(label="✨输入需要生成语音的文字", placeholder="输入文字", |
|
value="您好,欢迎使用德拉曼网络服务,要不要来一起打游戏", |
|
info="使用huggingface的免费CPU进行推理,因此速度不快,单次最多生成500字,多余的会被忽略。字数越多越耗时,请耐心等待,只会说中文。", |
|
) |
|
model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='📢音声模型(不同模型声音完全不同,比如“滴滴,你个王八蛋“,建议使用BadDLMboy)') |
|
with gr.Accordion(label="💡展开设置生成参数", open=False): |
|
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化') |
|
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化') |
|
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度') |
|
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢') |
|
btn = gr.Button("🪄生成", variant="primary") |
|
with gr.Column(): |
|
audio_output = gr.Audio(label="🔊试听") |
|
MP3_output = gr.File(label="💾下载") |
|
text_output = gr.Textbox(label="❗调试信息") |
|
gr.Markdown(""" |
|
|
|
""") |
|
btn.click( |
|
tts_generator, |
|
inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model], |
|
outputs=[text_output, audio_output,MP3_output] |
|
) |
|
gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLM" /></div>''') |
|
app.launch(show_error=True) |
|
|
|
|