Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import io
|
|
8 |
|
9 |
# Function to perform mean pooling on the model outputs
|
10 |
def mean_pooling(model_output, attention_mask):
|
11 |
-
token_embeddings = model_output['last_hidden_state']
|
12 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
13 |
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
14 |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
@@ -26,7 +26,7 @@ model_text = AutoModel.from_pretrained('jim33282007/5240_grp27_proj')
|
|
26 |
model_gpt2 = AutoModelForCausalLM.from_pretrained('gpt2')
|
27 |
tokenizer_gpt2 = AutoTokenizer.from_pretrained('gpt2')
|
28 |
|
29 |
-
st.title('Image Captioning, Text Embedding, and
|
30 |
|
31 |
# Function to load images from URL
|
32 |
def load_image_from_url(url):
|
@@ -46,7 +46,6 @@ typed_text = ""
|
|
46 |
if input_type == "Upload Image":
|
47 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
48 |
if uploaded_file is not None:
|
49 |
-
# Convert bytes to a PIL image
|
50 |
image = Image.open(io.BytesIO(uploaded_file.getvalue()))
|
51 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
52 |
elif input_type == "Image URL":
|
@@ -58,26 +57,28 @@ elif input_type == "Image URL":
|
|
58 |
elif input_type == "Type Sentence":
|
59 |
typed_text = st.text_area("Type your sentence here:")
|
60 |
|
61 |
-
# Generate caption button
|
62 |
-
if st.button('Generate Caption and Process'):
|
63 |
if image or typed_text:
|
64 |
with st.spinner("Processing..."):
|
65 |
generated_text_p1 = ""
|
66 |
if input_type == "Upload Image" and uploaded_file is not None:
|
67 |
-
# Use the PIL image directly with the pipeline
|
68 |
result = image_to_text(image)
|
69 |
generated_text_p1 = result[0]['generated_text']
|
70 |
elif input_type == "Image URL" and image_url:
|
71 |
result = image_to_text(image_url)
|
72 |
generated_text_p1 = result[0]['generated_text']
|
73 |
elif input_type == "Type Sentence" and typed_text:
|
74 |
-
generated_text_p1 = typed_text
|
75 |
|
76 |
if generated_text_p1:
|
77 |
st.success(f'Processed Text: {generated_text_p1}')
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
else:
|
82 |
st.error("Please upload an image, enter an image URL, or type a sentence first.")
|
83 |
-
|
|
|
8 |
|
9 |
# Function to perform mean pooling on the model outputs
|
10 |
def mean_pooling(model_output, attention_mask):
|
11 |
+
token_embeddings = model_output['last_hidden_state']
|
12 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
13 |
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
14 |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
|
26 |
model_gpt2 = AutoModelForCausalLM.from_pretrained('gpt2')
|
27 |
tokenizer_gpt2 = AutoTokenizer.from_pretrained('gpt2')
|
28 |
|
29 |
+
st.title('Image Captioning, Text Embedding, Text Generation, and Input Application')
|
30 |
|
31 |
# Function to load images from URL
|
32 |
def load_image_from_url(url):
|
|
|
46 |
if input_type == "Upload Image":
|
47 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
48 |
if uploaded_file is not None:
|
|
|
49 |
image = Image.open(io.BytesIO(uploaded_file.getvalue()))
|
50 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
51 |
elif input_type == "Image URL":
|
|
|
57 |
elif input_type == "Type Sentence":
|
58 |
typed_text = st.text_area("Type your sentence here:")
|
59 |
|
60 |
+
# Generate caption and process text button
|
61 |
+
if st.button('Generate Caption and Process Text'):
|
62 |
if image or typed_text:
|
63 |
with st.spinner("Processing..."):
|
64 |
generated_text_p1 = ""
|
65 |
if input_type == "Upload Image" and uploaded_file is not None:
|
|
|
66 |
result = image_to_text(image)
|
67 |
generated_text_p1 = result[0]['generated_text']
|
68 |
elif input_type == "Image URL" and image_url:
|
69 |
result = image_to_text(image_url)
|
70 |
generated_text_p1 = result[0]['generated_text']
|
71 |
elif input_type == "Type Sentence" and typed_text:
|
72 |
+
generated_text_p1 = typed_text
|
73 |
|
74 |
if generated_text_p1:
|
75 |
st.success(f'Processed Text: {generated_text_p1}')
|
76 |
|
77 |
+
# Generate additional text using GPT-2 based on the processed text
|
78 |
+
input_ids = tokenizer_gpt2.encode(generated_text_p1, return_tensors='pt')
|
79 |
+
generated_outputs = model_gpt2.generate(input_ids, max_length=100, num_return_sequences=1)
|
80 |
+
generated_text = tokenizer_gpt2.decode(generated_outputs[0], skip_special_tokens=True)
|
81 |
+
|
82 |
+
st.text_area("Generated Text:", generated_text, height=200)
|
83 |
else:
|
84 |
st.error("Please upload an image, enter an image URL, or type a sentence first.")
|
|