interior-design / models.py
BertChristiaens's picture
Update models.py
d47ae93
raw
history blame
11.1 kB
"""This file contains methods for inference and image generation."""
import logging
from typing import List, Tuple, Dict
import streamlit as st
import torch
import numpy as np
from PIL import Image
from time import perf_counter
from contextlib import contextmanager
from scipy.signal import fftconvolve
from PIL import ImageFilter
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from diffusers import ControlNetModel, UniPCMultistepScheduler
from diffusers import StableDiffusionInpaintPipeline
from compel import Compel
from config import WIDTH, HEIGHT
from palette import ade_palette
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline
LOGGING = logging.getLogger(__name__)
@contextmanager
def catchtime(message: str) -> float:
"""Context manager to measure time
Args:
message (str): message to log
Returns:
float: time in seconds
Yields:
Iterator[float]: time in seconds
"""
start = perf_counter()
yield lambda: perf_counter() - start
LOGGING.info('%s: %.3f seconds', message, perf_counter() - start)
def convolution(mask: Image.Image, size=9) -> Image:
"""Method to blur the mask
Args:
mask (Image): masking image
size (int, optional): size of the blur. Defaults to 9.
Returns:
Image: blurred mask
"""
mask = np.array(mask.convert("L"))
conv = np.ones((size, size)) / size**2
mask_blended = fftconvolve(mask, conv, 'same')
mask_blended = mask_blended.astype(np.uint8).copy()
border = size
# replace borders with original values
mask_blended[:border, :] = mask[:border, :]
mask_blended[-border:, :] = mask[-border:, :]
mask_blended[:, :border] = mask[:, :border]
mask_blended[:, -border:] = mask[:, -border:]
return Image.fromarray(mask_blended).convert("L")
def postprocess_image_masking(inpainted: Image, image: Image, mask: Image) -> Image:
"""Method to postprocess the inpainted image
Args:
inpainted (Image): inpainted image
image (Image): original image
mask (Image): mask
Returns:
Image: inpainted image
"""
final_inpainted = Image.composite(inpainted.convert("RGBA"), image.convert("RGBA"), mask)
return final_inpainted.convert("RGB")
@st.experimental_singleton(max_entries=1)
def get_controlnet() -> ControlNetModel:
"""Method to load the controlnet model
Returns:
ControlNetModel: controlnet model
"""
controlnet = ControlNetModel.from_pretrained(
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to("cuda")
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
return pipe, compel_proc
@st.experimental_singleton(max_entries=1)
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
"""Method to load the segmentation pipeline
Returns:
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
"""
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
"openmmlab/upernet-convnext-small")
return image_processor, image_segmentor
@st.experimental_singleton(max_entries=1)
def get_inpainting_pipeline() -> StableDiffusionInpaintPipeline:
"""Method to load the inpainting pipeline
Returns:
StableDiffusionInpaintPipeline: inpainting pipeline
"""
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to("cuda")
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
return pipe, compel_proc
def make_grid_parameters(grid_search: Dict, params: Dict) -> List[Dict]:
"""Method to make grid parameters
Args:
grid_search (Dict): grid search parameters
params (Dict): fixed parameters
Returns:
List[Dict]: grid parameters
"""
options = []
for k in range(len(grid_search['generator'])):
for i in range(len(grid_search['strength'])):
for j in range(len(grid_search['guidance_scale'])):
options.append({'strength': grid_search['strength'][i],
'guidance_scale': grid_search['guidance_scale'][j],
'generator': grid_search['generator'][k],
**params
})
return options
def make_captions(options: List[Dict]) -> List[str]:
"""Method to make captions
Args:
options (List[Dict]): grid parameters
Returns:
List[str]: captions
"""
captions = []
for option in options:
captions.append(
f"strength {option['strength']}, guidance {option['guidance_scale']}, steps {option['num_inference_steps']}")
return captions
@torch.inference_mode()
def make_image_controlnet(image: np.ndarray,
mask_image: np.ndarray,
controlnet_conditioning_image: np.ndarray,
positive_prompt: str, negative_prompt: str,
seed: int = 2356132) -> List[Image.Image]:
"""Method to make image using controlnet
Args:
image (np.ndarray): input image
mask_image (np.ndarray): mask image
controlnet_conditioning_image (np.ndarray): conditioning image
positive_prompt (str): positive prompt string
negative_prompt (str): negative prompt string
seed (int, optional): seed. Defaults to 2356132.
Returns:
List[Image.Image]: list of generated images
"""
with catchtime("get controlnet"):
pipe, proc = get_controlnet()
torch.cuda.empty_cache()
images = []
if '+' in positive_prompt or '-' in positive_prompt or '+' in negative_prompt or '-' in negative_prompt:
common_parameters = {'prompt_embeds': proc(positive_prompt),
'negative_prompt_embeds': proc(negative_prompt),
'num_inference_steps': 30,
'controlnet_conditioning_scale': 1.1,
'controlnet_conditioning_scale_decay': 0.96,
'controlnet_steps': 28,
}
else:
common_parameters = {'prompt': positive_prompt,
'negative_prompt': negative_prompt,
'num_inference_steps': 30,
'controlnet_conditioning_scale': 1.1,
'controlnet_conditioning_scale_decay': 0.96,
'controlnet_steps': 28,
}
grid_search = {'strength': [1.00, ],
'guidance_scale': [7.0],
'generator': [[torch.Generator(device="cuda").manual_seed(seed+i)] for i in range(1)],
}
prompt_settings = make_grid_parameters(grid_search, common_parameters)
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8)).convert("RGB")
image = Image.fromarray(image).convert("RGB")
controlnet_conditioning_image = Image.fromarray(controlnet_conditioning_image).convert("RGB").filter(ImageFilter.GaussianBlur(radius = 9))
mask_image_postproc = convolution(mask_image)
with catchtime("Controlnet generation total"):
for _, setting in enumerate(prompt_settings):
with catchtime("Controlnet generation"):
generated_image = pipe(
**setting,
image=image,
mask_image=mask_image,
controlnet_conditioning_image=controlnet_conditioning_image,
).images[0]
generated_image = postprocess_image_masking(
generated_image, image, mask_image_postproc)
images.append(generated_image)
return images
@torch.inference_mode()
def make_inpainting(positive_prompt: str,
image: Image,
mask_image: np.ndarray,
negative_prompt: str = "") -> List[Image.Image]:
"""Method to make inpainting
Args:
positive_prompt (str): positive prompt string
image (Image): input image
mask_image (np.ndarray): mask image
negative_prompt (str, optional): negative prompt string. Defaults to "".
Returns:
List[Image.Image]: list of generated images
"""
with catchtime("Get inpainting pipeline"):
pipe, proc = get_inpainting_pipeline()
if '+' in positive_prompt or '-' in positive_prompt or '+' in negative_prompt or '-' in negative_prompt:
common_parameters = {'prompt_embeds': proc(positive_prompt),
'negative_prompt_embeds': proc(negative_prompt),
'num_inference_steps': 20,
}
else:
common_parameters = {'prompt': positive_prompt,
'negative_prompt': negative_prompt,
'num_inference_steps': 20,
}
torch.cuda.empty_cache()
images = []
for _ in range(1):
with catchtime("Inpainting generation"):
image_ = pipe(image=image,
mask_image=Image.fromarray((mask_image * 255).astype(np.uint8)),
height=HEIGHT,
width=WIDTH,
**common_parameters
).images[0]
images.append(image_)
return images
@torch.inference_mode()
@torch.autocast('cuda')
def segment_image(image: Image) -> Image:
"""Method to segment image
Args:
image (Image): input image
Returns:
Image: segmented image
"""
image_processor, image_segmentor = get_segmentation_pipeline()
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])
seg = seg[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
seg_image = Image.fromarray(color_seg).convert('RGB')
return seg_image