ZIT-Controlnet / videox_fun /models /wan_transformer3d_vace.py
Alexander Bagus
22
be751d2
# Modified from https://github.com/ali-vilab/VACE/blob/main/vace/models/wan/wan_vace.py
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
from typing import Any, Dict
import os
import math
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import register_to_config
from diffusers.utils import is_torch_version
from .wan_transformer3d import (WanAttentionBlock, WanTransformer3DModel,
sinusoidal_embedding_1d)
from ..utils import cfg_skip
VIDEOX_OFFLOAD_VACE_LATENTS = os.environ.get("VIDEOX_OFFLOAD_VACE_LATENTS", False)
class VaceWanAttentionBlock(WanAttentionBlock):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=0
):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
self.block_id = block_id
if block_id == 0:
self.before_proj = nn.Linear(self.dim, self.dim)
nn.init.zeros_(self.before_proj.weight)
nn.init.zeros_(self.before_proj.bias)
self.after_proj = nn.Linear(self.dim, self.dim)
nn.init.zeros_(self.after_proj.weight)
nn.init.zeros_(self.after_proj.bias)
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
all_c = []
else:
all_c = list(torch.unbind(c))
c = all_c.pop(-1)
if VIDEOX_OFFLOAD_VACE_LATENTS:
c = c.to(x.device)
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
if VIDEOX_OFFLOAD_VACE_LATENTS:
c_skip = c_skip.to("cpu")
c = c.to("cpu")
all_c += [c_skip, c]
c = torch.stack(all_c)
return c
class BaseWanAttentionBlock(WanAttentionBlock):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=None
):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
self.block_id = block_id
def forward(self, x, hints, context_scale=1.0, **kwargs):
x = super().forward(x, **kwargs)
if self.block_id is not None:
if VIDEOX_OFFLOAD_VACE_LATENTS:
x = x + hints[self.block_id].to(x.device) * context_scale
else:
x = x + hints[self.block_id] * context_scale
return x
class VaceWanTransformer3DModel(WanTransformer3DModel):
@register_to_config
def __init__(self,
vace_layers=None,
vace_in_dim=None,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6):
model_type = "t2v" # TODO: Hard code for both preview and official versions.
super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
assert 0 in self.vace_layers
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
# blocks
self.blocks = nn.ModuleList([
BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
self.cross_attn_norm, self.eps,
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
for i in range(self.num_layers)
])
# vace blocks
self.vace_blocks = nn.ModuleList([
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
self.cross_attn_norm, self.eps, block_id=i)
for i in self.vace_layers
])
# vace patch embeddings
self.vace_patch_embedding = nn.Conv3d(
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
)
def forward_vace(
self,
x,
vace_context,
seq_len,
kwargs
):
# embeddings
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
c = [u.flatten(2).transpose(1, 2) for u in c]
c = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
dim=1) for u in c
])
# Context Parallel
if self.sp_world_size > 1:
c = torch.chunk(c, self.sp_world_size, dim=1)[self.sp_world_rank]
# arguments
new_kwargs = dict(x=x)
new_kwargs.update(kwargs)
for block in self.vace_blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, **static_kwargs):
def custom_forward(*inputs):
return module(*inputs, **static_kwargs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
c = torch.utils.checkpoint.checkpoint(
create_custom_forward(block, **new_kwargs),
c,
**ckpt_kwargs,
)
else:
c = block(c, **new_kwargs)
hints = torch.unbind(c)[:-1]
return hints
@cfg_skip()
def forward(
self,
x,
t,
vace_context,
context,
seq_len,
vace_context_scale=1.0,
clip_fea=None,
y=None,
cond_flag=True
):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
# if self.model_type == 'i2v':
# assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
dtype = x.dtype
if self.freqs.device != device and torch.device(type="meta") != device:
self.freqs = self.freqs.to(device)
# if y is not None:
# x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
if self.sp_world_size > 1:
seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size
assert seq_lens.max() <= seq_len
x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
dim=1) for u in x
])
# time embeddings
with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat(
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
# Context Parallel
if self.sp_world_size > 1:
x = torch.chunk(x, self.sp_world_size, dim=1)[self.sp_world_rank]
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
dtype=dtype,
t=t)
hints = self.forward_vace(x, vace_context, seq_len, kwargs)
kwargs['hints'] = hints
kwargs['context_scale'] = vace_context_scale
# TeaCache
if self.teacache is not None:
if cond_flag:
if t.dim() != 1:
modulated_inp = e0[:, -1, :]
else:
modulated_inp = e0
skip_flag = self.teacache.cnt < self.teacache.num_skip_start_steps
if skip_flag:
self.should_calc = True
self.teacache.accumulated_rel_l1_distance = 0
else:
if cond_flag:
rel_l1_distance = self.teacache.compute_rel_l1_distance(self.teacache.previous_modulated_input, modulated_inp)
self.teacache.accumulated_rel_l1_distance += self.teacache.rescale_func(rel_l1_distance)
if self.teacache.accumulated_rel_l1_distance < self.teacache.rel_l1_thresh:
self.should_calc = False
else:
self.should_calc = True
self.teacache.accumulated_rel_l1_distance = 0
self.teacache.previous_modulated_input = modulated_inp
self.teacache.should_calc = self.should_calc
else:
self.should_calc = self.teacache.should_calc
# TeaCache
if self.teacache is not None:
if not self.should_calc:
previous_residual = self.teacache.previous_residual_cond if cond_flag else self.teacache.previous_residual_uncond
x = x + previous_residual.to(x.device)[-x.size()[0]:,]
else:
ori_x = x.clone().cpu() if self.teacache.offload else x.clone()
for block in self.blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, **static_kwargs):
def custom_forward(*inputs):
return module(*inputs, **static_kwargs)
return custom_forward
extra_kwargs = {
'e': e0,
'seq_lens': seq_lens,
'grid_sizes': grid_sizes,
'freqs': self.freqs,
'context': context,
'context_lens': context_lens,
'dtype': dtype,
't': t,
}
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block, **extra_kwargs),
x,
hints,
vace_context_scale,
**ckpt_kwargs,
)
else:
x = block(x, **kwargs)
if cond_flag:
self.teacache.previous_residual_cond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
else:
self.teacache.previous_residual_uncond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
else:
for block in self.blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, **static_kwargs):
def custom_forward(*inputs):
return module(*inputs, **static_kwargs)
return custom_forward
extra_kwargs = {
'e': e0,
'seq_lens': seq_lens,
'grid_sizes': grid_sizes,
'freqs': self.freqs,
'context': context,
'context_lens': context_lens,
'dtype': dtype,
't': t,
}
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block, **extra_kwargs),
x,
hints,
vace_context_scale,
**ckpt_kwargs,
)
else:
x = block(x, **kwargs)
# head
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.head), x, e, **ckpt_kwargs)
else:
x = self.head(x, e)
if self.sp_world_size > 1:
x = self.all_gather(x, dim=1)
# unpatchify
x = self.unpatchify(x, grid_sizes)
x = torch.stack(x)
if self.teacache is not None and cond_flag:
self.teacache.cnt += 1
if self.teacache.cnt == self.teacache.num_steps:
self.teacache.reset()
return x