Spaces:
Running
on
Zero
Running
on
Zero
| # Modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | |
| # Copyright 2025 The Hunyuan Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin | |
| from diffusers.loaders.single_file_model import FromOriginalModelMixin | |
| from diffusers.models.activations import get_activation | |
| from diffusers.models.attention import FeedForward | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.autoencoders.vae import (DecoderOutput, | |
| DiagonalGaussianDistribution) | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers.models.modeling_outputs import (AutoencoderKLOutput, | |
| Transformer2DModelOutput) | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm | |
| from diffusers.utils import (USE_PEFT_BACKEND, is_torch_version, logging, | |
| scale_lora_layers, unscale_lora_layers) | |
| from diffusers.utils.accelerate_utils import apply_forward_hook | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def prepare_causal_attention_mask( | |
| num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None | |
| ) -> torch.Tensor: | |
| indices = torch.arange(1, num_frames + 1, dtype=torch.int32, device=device) | |
| indices_blocks = indices.repeat_interleave(height_width) | |
| x, y = torch.meshgrid(indices_blocks, indices_blocks, indexing="xy") | |
| mask = torch.where(x <= y, 0, -float("inf")).to(dtype=dtype) | |
| if batch_size is not None: | |
| mask = mask.unsqueeze(0).expand(batch_size, -1, -1) | |
| return mask | |
| class HunyuanVideoCausalConv3d(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Union[int, Tuple[int, int, int]] = 3, | |
| stride: Union[int, Tuple[int, int, int]] = 1, | |
| padding: Union[int, Tuple[int, int, int]] = 0, | |
| dilation: Union[int, Tuple[int, int, int]] = 1, | |
| bias: bool = True, | |
| pad_mode: str = "replicate", | |
| ) -> None: | |
| super().__init__() | |
| kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size | |
| self.pad_mode = pad_mode | |
| self.time_causal_padding = ( | |
| kernel_size[0] // 2, | |
| kernel_size[0] // 2, | |
| kernel_size[1] // 2, | |
| kernel_size[1] // 2, | |
| kernel_size[2] - 1, | |
| 0, | |
| ) | |
| self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode) | |
| return self.conv(hidden_states) | |
| class HunyuanVideoUpsampleCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| kernel_size: int = 3, | |
| stride: int = 1, | |
| bias: bool = True, | |
| upsample_factor: Tuple[float, float, float] = (2, 2, 2), | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| self.upsample_factor = upsample_factor | |
| self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| num_frames = hidden_states.size(2) | |
| first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2) | |
| first_frame = F.interpolate( | |
| first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest" | |
| ).unsqueeze(2) | |
| if num_frames > 1: | |
| # See: https://github.com/pytorch/pytorch/issues/81665 | |
| # Unless you have a version of pytorch where non-contiguous implementation of F.interpolate | |
| # is fixed, this will raise either a runtime error, or fail silently with bad outputs. | |
| # If you are encountering an error here, make sure to try running encoding/decoding with | |
| # `vae.enable_tiling()` first. If that doesn't work, open an issue at: | |
| # https://github.com/huggingface/diffusers/issues | |
| other_frames = other_frames.contiguous() | |
| other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest") | |
| hidden_states = torch.cat((first_frame, other_frames), dim=2) | |
| else: | |
| hidden_states = first_frame | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoDownsampleCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| out_channels: Optional[int] = None, | |
| padding: int = 1, | |
| kernel_size: int = 3, | |
| bias: bool = True, | |
| stride=2, | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or channels | |
| self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoResnetBlockCausal3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| dropout: float = 0.0, | |
| groups: int = 32, | |
| eps: float = 1e-6, | |
| non_linearity: str = "swish", | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| self.nonlinearity = get_activation(non_linearity) | |
| self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True) | |
| self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0) | |
| self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True) | |
| self.dropout = nn.Dropout(dropout) | |
| self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0) | |
| self.conv_shortcut = None | |
| if in_channels != out_channels: | |
| self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = hidden_states.contiguous() | |
| residual = hidden_states | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| residual = self.conv_shortcut(residual) | |
| hidden_states = hidden_states + residual | |
| return hidden_states | |
| class HunyuanVideoMidBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_attention: bool = True, | |
| attention_head_dim: int = 1, | |
| ) -> None: | |
| super().__init__() | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| self.add_attention = add_attention | |
| # There is always at least one resnet | |
| resnets = [ | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ] | |
| attentions = [] | |
| for _ in range(num_layers): | |
| if self.add_attention: | |
| attentions.append( | |
| Attention( | |
| in_channels, | |
| heads=in_channels // attention_head_dim, | |
| dim_head=attention_head_dim, | |
| eps=resnet_eps, | |
| norm_num_groups=resnet_groups, | |
| residual_connection=True, | |
| bias=True, | |
| upcast_softmax=True, | |
| _from_deprecated_attn_block=True, | |
| ) | |
| ) | |
| else: | |
| attentions.append(None) | |
| resnets.append( | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states = self._gradient_checkpointing_func(self.resnets[0], hidden_states) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| if attn is not None: | |
| batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
| hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) | |
| attention_mask = prepare_causal_attention_mask( | |
| num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size | |
| ) | |
| hidden_states = attn(hidden_states, attention_mask=attention_mask) | |
| hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3) | |
| hidden_states = self._gradient_checkpointing_func(resnet, hidden_states) | |
| else: | |
| hidden_states = self.resnets[0](hidden_states) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| if attn is not None: | |
| batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
| hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3) | |
| attention_mask = prepare_causal_attention_mask( | |
| num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size | |
| ) | |
| hidden_states = attn(hidden_states, attention_mask=attention_mask) | |
| hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3) | |
| hidden_states = resnet(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoDownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_downsample: bool = True, | |
| downsample_stride: int = 2, | |
| downsample_padding: int = 1, | |
| ) -> None: | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| HunyuanVideoDownsampleCausal3D( | |
| out_channels, | |
| out_channels=out_channels, | |
| padding=downsample_padding, | |
| stride=downsample_stride, | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for resnet in self.resnets: | |
| hidden_states = self._gradient_checkpointing_func(resnet, hidden_states) | |
| else: | |
| for resnet in self.resnets: | |
| hidden_states = resnet(hidden_states) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoUpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_upsample: bool = True, | |
| upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2), | |
| ) -> None: | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| input_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| HunyuanVideoResnetBlockCausal3D( | |
| in_channels=input_channels, | |
| out_channels=out_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| non_linearity=resnet_act_fn, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList( | |
| [ | |
| HunyuanVideoUpsampleCausal3D( | |
| out_channels, | |
| out_channels=out_channels, | |
| upsample_factor=upsample_scale_factor, | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for resnet in self.resnets: | |
| hidden_states = self._gradient_checkpointing_func(resnet, hidden_states) | |
| else: | |
| for resnet in self.resnets: | |
| hidden_states = resnet(hidden_states) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoEncoder3D(nn.Module): | |
| r""" | |
| Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603). | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| double_z: bool = True, | |
| mid_block_add_attention=True, | |
| temporal_compression_ratio: int = 4, | |
| spatial_compression_ratio: int = 8, | |
| ) -> None: | |
| super().__init__() | |
| self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1) | |
| self.mid_block = None | |
| self.down_blocks = nn.ModuleList([]) | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| if down_block_type != "HunyuanVideoDownBlock3D": | |
| raise ValueError(f"Unsupported down_block_type: {down_block_type}") | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio)) | |
| num_time_downsample_layers = int(np.log2(temporal_compression_ratio)) | |
| if temporal_compression_ratio == 4: | |
| add_spatial_downsample = bool(i < num_spatial_downsample_layers) | |
| add_time_downsample = bool( | |
| i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block | |
| ) | |
| elif temporal_compression_ratio == 8: | |
| add_spatial_downsample = bool(i < num_spatial_downsample_layers) | |
| add_time_downsample = bool(i < num_time_downsample_layers) | |
| else: | |
| raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}") | |
| downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1) | |
| downsample_stride_T = (2,) if add_time_downsample else (1,) | |
| downsample_stride = tuple(downsample_stride_T + downsample_stride_HW) | |
| down_block = HunyuanVideoDownBlock3D( | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| add_downsample=bool(add_spatial_downsample or add_time_downsample), | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| downsample_stride=downsample_stride, | |
| downsample_padding=0, | |
| ) | |
| self.down_blocks.append(down_block) | |
| self.mid_block = HunyuanVideoMidBlock3D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| add_attention=mid_block_add_attention, | |
| ) | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| conv_out_channels = 2 * out_channels if double_z else out_channels | |
| self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3) | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.conv_in(hidden_states) | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for down_block in self.down_blocks: | |
| hidden_states = self._gradient_checkpointing_func(down_block, hidden_states) | |
| hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states) | |
| else: | |
| for down_block in self.down_blocks: | |
| hidden_states = down_block(hidden_states) | |
| hidden_states = self.mid_block(hidden_states) | |
| hidden_states = self.conv_norm_out(hidden_states) | |
| hidden_states = self.conv_act(hidden_states) | |
| hidden_states = self.conv_out(hidden_states) | |
| return hidden_states | |
| class HunyuanVideoDecoder3D(nn.Module): | |
| r""" | |
| Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603). | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| up_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
| layers_per_block: int = 2, | |
| norm_num_groups: int = 32, | |
| act_fn: str = "silu", | |
| mid_block_add_attention=True, | |
| time_compression_ratio: int = 4, | |
| spatial_compression_ratio: int = 8, | |
| ): | |
| super().__init__() | |
| self.layers_per_block = layers_per_block | |
| self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) | |
| self.up_blocks = nn.ModuleList([]) | |
| # mid | |
| self.mid_block = HunyuanVideoMidBlock3D( | |
| in_channels=block_out_channels[-1], | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| attention_head_dim=block_out_channels[-1], | |
| resnet_groups=norm_num_groups, | |
| add_attention=mid_block_add_attention, | |
| ) | |
| # up | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| output_channel = reversed_block_out_channels[0] | |
| for i, up_block_type in enumerate(up_block_types): | |
| if up_block_type != "HunyuanVideoUpBlock3D": | |
| raise ValueError(f"Unsupported up_block_type: {up_block_type}") | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) | |
| num_time_upsample_layers = int(np.log2(time_compression_ratio)) | |
| if time_compression_ratio == 4: | |
| add_spatial_upsample = bool(i < num_spatial_upsample_layers) | |
| add_time_upsample = bool( | |
| i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block | |
| ) | |
| else: | |
| raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}") | |
| upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) | |
| upsample_scale_factor_T = (2,) if add_time_upsample else (1,) | |
| upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) | |
| up_block = HunyuanVideoUpBlock3D( | |
| num_layers=self.layers_per_block + 1, | |
| in_channels=prev_output_channel, | |
| out_channels=output_channel, | |
| add_upsample=bool(add_spatial_upsample or add_time_upsample), | |
| upsample_scale_factor=upsample_scale_factor, | |
| resnet_eps=1e-6, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| ) | |
| self.up_blocks.append(up_block) | |
| prev_output_channel = output_channel | |
| # out | |
| self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3) | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.conv_in(hidden_states) | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states) | |
| for up_block in self.up_blocks: | |
| hidden_states = self._gradient_checkpointing_func(up_block, hidden_states) | |
| else: | |
| hidden_states = self.mid_block(hidden_states) | |
| for up_block in self.up_blocks: | |
| hidden_states = up_block(hidden_states) | |
| # post-process | |
| hidden_states = self.conv_norm_out(hidden_states) | |
| hidden_states = self.conv_act(hidden_states) | |
| hidden_states = self.conv_out(hidden_states) | |
| return hidden_states | |
| class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| r""" | |
| A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. | |
| Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603). | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| latent_channels: int = 16, | |
| down_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| ), | |
| up_block_types: Tuple[str, ...] = ( | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
| layers_per_block: int = 2, | |
| act_fn: str = "silu", | |
| norm_num_groups: int = 32, | |
| scaling_factor: float = 0.476986, | |
| spatial_compression_ratio: int = 8, | |
| temporal_compression_ratio: int = 4, | |
| mid_block_add_attention: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.time_compression_ratio = temporal_compression_ratio | |
| self.encoder = HunyuanVideoEncoder3D( | |
| in_channels=in_channels, | |
| out_channels=latent_channels, | |
| down_block_types=down_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| double_z=True, | |
| mid_block_add_attention=mid_block_add_attention, | |
| temporal_compression_ratio=temporal_compression_ratio, | |
| spatial_compression_ratio=spatial_compression_ratio, | |
| ) | |
| self.decoder = HunyuanVideoDecoder3D( | |
| in_channels=latent_channels, | |
| out_channels=out_channels, | |
| up_block_types=up_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| norm_num_groups=norm_num_groups, | |
| act_fn=act_fn, | |
| time_compression_ratio=temporal_compression_ratio, | |
| spatial_compression_ratio=spatial_compression_ratio, | |
| mid_block_add_attention=mid_block_add_attention, | |
| ) | |
| self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1) | |
| self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1) | |
| self.spatial_compression_ratio = spatial_compression_ratio | |
| self.temporal_compression_ratio = temporal_compression_ratio | |
| # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension | |
| # to perform decoding of a single video latent at a time. | |
| self.use_slicing = False | |
| # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent | |
| # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the | |
| # intermediate tiles together, the memory requirement can be lowered. | |
| self.use_tiling = True | |
| # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames | |
| # at a fixed frame batch size (based on `self.tile_sample_min_num_frames`), the memory requirement can be lowered. | |
| self.use_framewise_encoding = True | |
| self.use_framewise_decoding = True | |
| # The minimal tile height and width for spatial tiling to be used | |
| self.tile_sample_min_height = 256 | |
| self.tile_sample_min_width = 256 | |
| self.tile_sample_min_num_frames = 16 | |
| # The minimal distance between two spatial tiles | |
| self.tile_sample_stride_height = 192 | |
| self.tile_sample_stride_width = 192 | |
| self.tile_sample_stride_num_frames = 12 | |
| def enable_tiling( | |
| self, | |
| tile_sample_min_height: Optional[int] = None, | |
| tile_sample_min_width: Optional[int] = None, | |
| tile_sample_min_num_frames: Optional[int] = None, | |
| tile_sample_stride_height: Optional[float] = None, | |
| tile_sample_stride_width: Optional[float] = None, | |
| tile_sample_stride_num_frames: Optional[float] = None, | |
| ) -> None: | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| Args: | |
| tile_sample_min_height (`int`, *optional*): | |
| The minimum height required for a sample to be separated into tiles across the height dimension. | |
| tile_sample_min_width (`int`, *optional*): | |
| The minimum width required for a sample to be separated into tiles across the width dimension. | |
| tile_sample_min_num_frames (`int`, *optional*): | |
| The minimum number of frames required for a sample to be separated into tiles across the frame | |
| dimension. | |
| tile_sample_stride_height (`int`, *optional*): | |
| The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are | |
| no tiling artifacts produced across the height dimension. | |
| tile_sample_stride_width (`int`, *optional*): | |
| The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling | |
| artifacts produced across the width dimension. | |
| tile_sample_stride_num_frames (`int`, *optional*): | |
| The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts | |
| produced across the frame dimension. | |
| """ | |
| self.use_tiling = True | |
| self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | |
| self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width | |
| self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames | |
| self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height | |
| self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width | |
| self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames | |
| def _encode(self, x: torch.Tensor) -> torch.Tensor: | |
| batch_size, num_channels, num_frames, height, width = x.shape | |
| if self.use_framewise_encoding and num_frames > self.tile_sample_min_num_frames: | |
| return self._temporal_tiled_encode(x) | |
| if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): | |
| return self.tiled_encode(x) | |
| x = self.encoder(x) | |
| enc = self.quant_conv(x) | |
| return enc | |
| def encode( | |
| self, x: torch.Tensor, return_dict: bool = True | |
| ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
| r""" | |
| Encode a batch of images into latents. | |
| Args: | |
| x (`torch.Tensor`): Input batch of images. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
| Returns: | |
| The latent representations of the encoded videos. If `return_dict` is True, a | |
| [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
| """ | |
| if self.use_slicing and x.shape[0] > 1: | |
| encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] | |
| h = torch.cat(encoded_slices) | |
| else: | |
| h = self._encode(x) | |
| posterior = DiagonalGaussianDistribution(h) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| batch_size, num_channels, num_frames, height, width = z.shape | |
| tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
| tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
| tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
| if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames: | |
| return self._temporal_tiled_decode(z, return_dict=return_dict) | |
| if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height): | |
| return self.tiled_decode(z, return_dict=return_dict) | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Decode a batch of images. | |
| Args: | |
| z (`torch.Tensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| if self.use_slicing and z.shape[0] > 1: | |
| decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
| decoded = torch.cat(decoded_slices) | |
| else: | |
| decoded = self._decode(z).sample | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( | |
| y / blend_extent | |
| ) | |
| return b | |
| def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( | |
| x / blend_extent | |
| ) | |
| return b | |
| def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[-3], b.shape[-3], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * ( | |
| x / blend_extent | |
| ) | |
| return b | |
| def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
| r"""Encode a batch of images using a tiled encoder. | |
| Args: | |
| x (`torch.Tensor`): Input batch of videos. | |
| Returns: | |
| `torch.Tensor`: | |
| The latent representation of the encoded videos. | |
| """ | |
| batch_size, num_channels, num_frames, height, width = x.shape | |
| latent_height = height // self.spatial_compression_ratio | |
| latent_width = width // self.spatial_compression_ratio | |
| tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
| tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
| tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio | |
| tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
| blend_height = tile_latent_min_height - tile_latent_stride_height | |
| blend_width = tile_latent_min_width - tile_latent_stride_width | |
| # Split x into overlapping tiles and encode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, height, self.tile_sample_stride_height): | |
| row = [] | |
| for j in range(0, width, self.tile_sample_stride_width): | |
| tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width] | |
| tile = self.encoder(tile) | |
| tile = self.quant_conv(tile) | |
| row.append(tile) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_width) | |
| result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] | |
| return enc | |
| def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Decode a batch of images using a tiled decoder. | |
| Args: | |
| z (`torch.Tensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| batch_size, num_channels, num_frames, height, width = z.shape | |
| sample_height = height * self.spatial_compression_ratio | |
| sample_width = width * self.spatial_compression_ratio | |
| tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
| tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
| tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio | |
| tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
| blend_height = self.tile_sample_min_height - self.tile_sample_stride_height | |
| blend_width = self.tile_sample_min_width - self.tile_sample_stride_width | |
| # Split z into overlapping tiles and decode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, height, tile_latent_stride_height): | |
| row = [] | |
| for j in range(0, width, tile_latent_stride_width): | |
| tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width] | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile) | |
| row.append(decoded) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_width) | |
| result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width]) | |
| result_rows.append(torch.cat(result_row, dim=-1)) | |
| dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
| batch_size, num_channels, num_frames, height, width = x.shape | |
| latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1 | |
| tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
| tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio | |
| blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames | |
| row = [] | |
| for i in range(0, num_frames, self.tile_sample_stride_num_frames): | |
| tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :] | |
| if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width): | |
| tile = self.tiled_encode(tile) | |
| else: | |
| tile = self.encoder(tile) | |
| tile = self.quant_conv(tile) | |
| if i > 0: | |
| tile = tile[:, :, 1:, :, :] | |
| row.append(tile) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_t(row[i - 1], tile, blend_num_frames) | |
| result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :]) | |
| else: | |
| result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :]) | |
| enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames] | |
| return enc | |
| def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| batch_size, num_channels, num_frames, height, width = z.shape | |
| num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | |
| tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
| tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
| tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio | |
| tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio | |
| blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames | |
| row = [] | |
| for i in range(0, num_frames, tile_latent_stride_num_frames): | |
| tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :] | |
| if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height): | |
| decoded = self.tiled_decode(tile, return_dict=True).sample | |
| else: | |
| tile = self.post_quant_conv(tile) | |
| decoded = self.decoder(tile) | |
| if i > 0: | |
| decoded = decoded[:, :, 1:, :, :] | |
| row.append(decoded) | |
| result_row = [] | |
| for i, tile in enumerate(row): | |
| if i > 0: | |
| tile = self.blend_t(row[i - 1], tile, blend_num_frames) | |
| result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :]) | |
| else: | |
| result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :]) | |
| dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames] | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Args: | |
| sample (`torch.Tensor`): Input sample. | |
| sample_posterior (`bool`, *optional*, defaults to `False`): | |
| Whether to sample from the posterior. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
| """ | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z, return_dict=return_dict) | |
| return dec |