artificialguybr's picture
Update app.py
c9f8849
raw
history blame
3.7 kB
import gradio as gr
import subprocess
import os
from googletrans import Translator
from TTS.api import TTS
import ffmpeg
import whisper
from scipy.signal import wiener
import soundfile as sf
from pydub import AudioSegment
import numpy as np
import librosa
os.environ["COQUI_TOS_AGREED"] = "1"
def process_video(video, high_quality, target_language):
with tempfile.TemporaryDirectory() as temp_dir:
output_filename = os.path.join(temp_dir, "resized_video.mp4")
if high_quality:
ffmpeg.input(video).output(output_filename, vf='scale=-1:720').run()
video_path = output_filename
else:
video_path = video
if not os.path.exists(video_path):
return f"Error: {video_path} does not exist."
audio_output = os.path.join(temp_dir, "output_audio.wav")
ffmpeg.input(video_path).output(audio_output, acodec='pcm_s24le', ar=48000, map='a', y=True).run()
y, sr = sf.read("output_audio.wav")
y = y.astype(np.float32)
y_denoised = wiener(y)
sf.write("output_audio_denoised.wav", y_denoised, sr)
sound = AudioSegment.from_file("output_audio_denoised.wav", format="wav")
sound = sound.apply_gain(0) # Reduce gain by 5 dB
sound = sound.low_pass_filter(3000).high_pass_filter(100)
sound.export("output_audio_processed.wav", format="wav")
shell_command = f"ffmpeg -y -i output_audio_processed.wav -af lowpass=3000,highpass=100 output_audio_final.wav".split(" ")
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
model = whisper.load_model("base")
result = model.transcribe("output_audio_final.wav")
whisper_text = result["text"]
whisper_language = result['language']
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
target_language_code = language_mapping[target_language]
translator = Translator()
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
tts.to('cuda') # Replacing deprecated gpu=True
tts.tts_to_file(translated_text, speaker_wav='output_audio_final.wav', file_path="output_synth.wav", language=target_language_code)
pad_top = 0
pad_bottom = 15
pad_left = 0
pad_right = 0
rescaleFactor = 1
video_path_fix = video_path
cmd = f"python Wav2Lip/inference.py --checkpoint_path '/Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path_fix)} --audio 'output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile 'output_video.mp4'"
subprocess.run(cmd, shell=True)
# Debugging Step 3: Check if output video exists
if not os.path.exists("output_video.mp4"):
return "Error: output_video.mp4 was not generated."
return "output_video.mp4"
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.inputs.Checkbox(label="High Quality"),
gr.inputs.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing")
],
outputs=gr.outputs.File(),
live=False
)
iface.launch()