video-dubbing-3min / Wav2Lip /hq_wav2lip_train.py
artificialguybr's picture
Upload 69 files
9d72f44
raw
history blame
16.7 kB
from os.path import dirname, join, basename, isfile
from tqdm import tqdm
from models import SyncNet_color as SyncNet
from models import Wav2Lip, Wav2Lip_disc_qual
import audio
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torch.backends.cudnn as cudnn
from torch.utils import data as data_utils
import numpy as np
from glob import glob
import os, random, cv2, argparse
from hparams import hparams, get_image_list
parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model WITH the visual quality discriminator')
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str)
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str)
parser.add_argument('--checkpoint_path', help='Resume generator from this checkpoint', default=None, type=str)
parser.add_argument('--disc_checkpoint_path', help='Resume quality disc from this checkpoint', default=None, type=str)
args = parser.parse_args()
global_step = 0
global_epoch = 0
use_cuda = torch.cuda.is_available()
print('use_cuda: {}'.format(use_cuda))
syncnet_T = 5
syncnet_mel_step_size = 16
class Dataset(object):
def __init__(self, split):
self.all_videos = get_image_list(args.data_root, split)
def get_frame_id(self, frame):
return int(basename(frame).split('.')[0])
def get_window(self, start_frame):
start_id = self.get_frame_id(start_frame)
vidname = dirname(start_frame)
window_fnames = []
for frame_id in range(start_id, start_id + syncnet_T):
frame = join(vidname, '{}.jpg'.format(frame_id))
if not isfile(frame):
return None
window_fnames.append(frame)
return window_fnames
def read_window(self, window_fnames):
if window_fnames is None: return None
window = []
for fname in window_fnames:
img = cv2.imread(fname)
if img is None:
return None
try:
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
except Exception as e:
return None
window.append(img)
return window
def crop_audio_window(self, spec, start_frame):
if type(start_frame) == int:
start_frame_num = start_frame
else:
start_frame_num = self.get_frame_id(start_frame)
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
end_idx = start_idx + syncnet_mel_step_size
return spec[start_idx : end_idx, :]
def get_segmented_mels(self, spec, start_frame):
mels = []
assert syncnet_T == 5
start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing
if start_frame_num - 2 < 0: return None
for i in range(start_frame_num, start_frame_num + syncnet_T):
m = self.crop_audio_window(spec, i - 2)
if m.shape[0] != syncnet_mel_step_size:
return None
mels.append(m.T)
mels = np.asarray(mels)
return mels
def prepare_window(self, window):
# 3 x T x H x W
x = np.asarray(window) / 255.
x = np.transpose(x, (3, 0, 1, 2))
return x
def __len__(self):
return len(self.all_videos)
def __getitem__(self, idx):
while 1:
idx = random.randint(0, len(self.all_videos) - 1)
vidname = self.all_videos[idx]
img_names = list(glob(join(vidname, '*.jpg')))
if len(img_names) <= 3 * syncnet_T:
continue
img_name = random.choice(img_names)
wrong_img_name = random.choice(img_names)
while wrong_img_name == img_name:
wrong_img_name = random.choice(img_names)
window_fnames = self.get_window(img_name)
wrong_window_fnames = self.get_window(wrong_img_name)
if window_fnames is None or wrong_window_fnames is None:
continue
window = self.read_window(window_fnames)
if window is None:
continue
wrong_window = self.read_window(wrong_window_fnames)
if wrong_window is None:
continue
try:
wavpath = join(vidname, "audio.wav")
wav = audio.load_wav(wavpath, hparams.sample_rate)
orig_mel = audio.melspectrogram(wav).T
except Exception as e:
continue
mel = self.crop_audio_window(orig_mel.copy(), img_name)
if (mel.shape[0] != syncnet_mel_step_size):
continue
indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name)
if indiv_mels is None: continue
window = self.prepare_window(window)
y = window.copy()
window[:, :, window.shape[2]//2:] = 0.
wrong_window = self.prepare_window(wrong_window)
x = np.concatenate([window, wrong_window], axis=0)
x = torch.FloatTensor(x)
mel = torch.FloatTensor(mel.T).unsqueeze(0)
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1)
y = torch.FloatTensor(y)
return x, indiv_mels, mel, y
def save_sample_images(x, g, gt, global_step, checkpoint_dir):
x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
refs, inps = x[..., 3:], x[..., :3]
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step))
if not os.path.exists(folder): os.mkdir(folder)
collage = np.concatenate((refs, inps, g, gt), axis=-2)
for batch_idx, c in enumerate(collage):
for t in range(len(c)):
cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t])
logloss = nn.BCELoss()
def cosine_loss(a, v, y):
d = nn.functional.cosine_similarity(a, v)
loss = logloss(d.unsqueeze(1), y)
return loss
device = torch.device("cuda" if use_cuda else "cpu")
syncnet = SyncNet().to(device)
for p in syncnet.parameters():
p.requires_grad = False
recon_loss = nn.L1Loss()
def get_sync_loss(mel, g):
g = g[:, :, :, g.size(3)//2:]
g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1)
# B, 3 * T, H//2, W
a, v = syncnet(mel, g)
y = torch.ones(g.size(0), 1).float().to(device)
return cosine_loss(a, v, y)
def train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
global global_step, global_epoch
resumed_step = global_step
while global_epoch < nepochs:
print('Starting Epoch: {}'.format(global_epoch))
running_sync_loss, running_l1_loss, disc_loss, running_perceptual_loss = 0., 0., 0., 0.
running_disc_real_loss, running_disc_fake_loss = 0., 0.
prog_bar = tqdm(enumerate(train_data_loader))
for step, (x, indiv_mels, mel, gt) in prog_bar:
disc.train()
model.train()
x = x.to(device)
mel = mel.to(device)
indiv_mels = indiv_mels.to(device)
gt = gt.to(device)
### Train generator now. Remove ALL grads.
optimizer.zero_grad()
disc_optimizer.zero_grad()
g = model(indiv_mels, x)
if hparams.syncnet_wt > 0.:
sync_loss = get_sync_loss(mel, g)
else:
sync_loss = 0.
if hparams.disc_wt > 0.:
perceptual_loss = disc.perceptual_forward(g)
else:
perceptual_loss = 0.
l1loss = recon_loss(g, gt)
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
loss.backward()
optimizer.step()
### Remove all gradients before Training disc
disc_optimizer.zero_grad()
pred = disc(gt)
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
disc_real_loss.backward()
pred = disc(g.detach())
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
disc_fake_loss.backward()
disc_optimizer.step()
running_disc_real_loss += disc_real_loss.item()
running_disc_fake_loss += disc_fake_loss.item()
if global_step % checkpoint_interval == 0:
save_sample_images(x, g, gt, global_step, checkpoint_dir)
# Logs
global_step += 1
cur_session_steps = global_step - resumed_step
running_l1_loss += l1loss.item()
if hparams.syncnet_wt > 0.:
running_sync_loss += sync_loss.item()
else:
running_sync_loss += 0.
if hparams.disc_wt > 0.:
running_perceptual_loss += perceptual_loss.item()
else:
running_perceptual_loss += 0.
if global_step == 1 or global_step % checkpoint_interval == 0:
save_checkpoint(
model, optimizer, global_step, checkpoint_dir, global_epoch)
save_checkpoint(disc, disc_optimizer, global_step, checkpoint_dir, global_epoch, prefix='disc_')
if global_step % hparams.eval_interval == 0:
with torch.no_grad():
average_sync_loss = eval_model(test_data_loader, global_step, device, model, disc)
if average_sync_loss < .75:
hparams.set_hparam('syncnet_wt', 0.03)
prog_bar.set_description('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(running_l1_loss / (step + 1),
running_sync_loss / (step + 1),
running_perceptual_loss / (step + 1),
running_disc_fake_loss / (step + 1),
running_disc_real_loss / (step + 1)))
global_epoch += 1
def eval_model(test_data_loader, global_step, device, model, disc):
eval_steps = 300
print('Evaluating for {} steps'.format(eval_steps))
running_sync_loss, running_l1_loss, running_disc_real_loss, running_disc_fake_loss, running_perceptual_loss = [], [], [], [], []
while 1:
for step, (x, indiv_mels, mel, gt) in enumerate((test_data_loader)):
model.eval()
disc.eval()
x = x.to(device)
mel = mel.to(device)
indiv_mels = indiv_mels.to(device)
gt = gt.to(device)
pred = disc(gt)
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
g = model(indiv_mels, x)
pred = disc(g)
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
running_disc_real_loss.append(disc_real_loss.item())
running_disc_fake_loss.append(disc_fake_loss.item())
sync_loss = get_sync_loss(mel, g)
if hparams.disc_wt > 0.:
perceptual_loss = disc.perceptual_forward(g)
else:
perceptual_loss = 0.
l1loss = recon_loss(g, gt)
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
running_l1_loss.append(l1loss.item())
running_sync_loss.append(sync_loss.item())
if hparams.disc_wt > 0.:
running_perceptual_loss.append(perceptual_loss.item())
else:
running_perceptual_loss.append(0.)
if step > eval_steps: break
print('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(sum(running_l1_loss) / len(running_l1_loss),
sum(running_sync_loss) / len(running_sync_loss),
sum(running_perceptual_loss) / len(running_perceptual_loss),
sum(running_disc_fake_loss) / len(running_disc_fake_loss),
sum(running_disc_real_loss) / len(running_disc_real_loss)))
return sum(running_sync_loss) / len(running_sync_loss)
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, prefix=''):
checkpoint_path = join(
checkpoint_dir, "{}checkpoint_step{:09d}.pth".format(prefix, global_step))
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path):
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True):
global global_step
global global_epoch
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
if overwrite_global_states:
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model
if __name__ == "__main__":
checkpoint_dir = args.checkpoint_dir
# Dataset and Dataloader setup
train_dataset = Dataset('train')
test_dataset = Dataset('val')
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=hparams.batch_size, shuffle=True,
num_workers=hparams.num_workers)
test_data_loader = data_utils.DataLoader(
test_dataset, batch_size=hparams.batch_size,
num_workers=4)
device = torch.device("cuda" if use_cuda else "cpu")
# Model
model = Wav2Lip().to(device)
disc = Wav2Lip_disc_qual().to(device)
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
print('total DISC trainable params {}'.format(sum(p.numel() for p in disc.parameters() if p.requires_grad)))
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
lr=hparams.initial_learning_rate, betas=(0.5, 0.999))
disc_optimizer = optim.Adam([p for p in disc.parameters() if p.requires_grad],
lr=hparams.disc_initial_learning_rate, betas=(0.5, 0.999))
if args.checkpoint_path is not None:
load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False)
if args.disc_checkpoint_path is not None:
load_checkpoint(args.disc_checkpoint_path, disc, disc_optimizer,
reset_optimizer=False, overwrite_global_states=False)
load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True,
overwrite_global_states=False)
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
# Train!
train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
checkpoint_dir=checkpoint_dir,
checkpoint_interval=hparams.checkpoint_interval,
nepochs=hparams.nepochs)