Spaces:
Runtime error
Runtime error
| from transformers import pipeline | |
| import gradio as gr | |
| # Initialize text classification pipeline | |
| classifier = pipeline("text-classification", model="facebook/bart-large-mnli") | |
| def classify_text(text): | |
| if not text.strip(): | |
| return "Please enter some text to classify" | |
| try: | |
| # Get classification results | |
| results = classifier(text) | |
| # Format results | |
| output = "## Classification Results:\n\n" | |
| for result in results: | |
| label = result['label'] | |
| score = result['score'] * 100 | |
| output += f"- **{label}**: {score:.2f}%\n" | |
| return output | |
| except Exception as e: | |
| return f"Error during classification: {str(e)}" | |
| # Gradio interface | |
| with gr.Blocks(title="Text Classifier") as demo: | |
| gr.Markdown("# π Text Classification AI") | |
| gr.Markdown("Classify text using Hugging Face's BART model") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox( | |
| lines=8, | |
| placeholder="Enter text to classify...", | |
| label="Input Text" | |
| ) | |
| classify_btn = gr.Button("Classify Text", variant="primary") | |
| with gr.Column(): | |
| output_text = gr.Markdown(label="Classification Results") | |
| classify_btn.click( | |
| classify_text, | |
| inputs=input_text, | |
| outputs=output_text | |
| ) | |
| gr.Examples( | |
| [ | |
| ["I love this movie, it's fantastic!"], | |
| ["This product is terrible and broke after one day"], | |
| ["The weather today is sunny and warm"], | |
| ["Machine learning is a subset of artificial intelligence"], | |
| ["I'm feeling sad and disappointed about the results"] | |
| ], | |
| inputs=input_text | |
| ) | |
| gr.Markdown("### About This Model") | |
| gr.Markdown("- **Model**: [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli)") | |
| gr.Markdown("- **Task**: Zero-shot text classification") | |
| gr.Markdown("- **Capabilities**: Classifies text into various categories without specific training") | |
| gr.Markdown("- **Note**: First classification may take 10-15 seconds (model loading)") | |
| if __name__ == "__main__": | |
| demo.launch() |