|
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments |
|
from datasets import load_dataset |
|
|
|
|
|
model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
|
|
conversation_dataset = load_dataset("bavard/personachat_truecased") |
|
coding_dataset = load_dataset("lvwerra/stack-exchange-paired") |
|
math_dataset = load_dataset("allenai/math_qa") |
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], padding="max_length", truncation=True) |
|
|
|
conversation_dataset = conversation_dataset.map(tokenize_function, batched=True) |
|
coding_dataset = coding_dataset.map(tokenize_function, batched=True) |
|
math_dataset = math_dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
train_dataset = conversation_dataset["train"] + coding_dataset["train"] + math_dataset["train"] |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./output", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=4, |
|
per_device_eval_batch_size=4, |
|
logging_dir="./logs", |
|
logging_steps=10, |
|
save_steps=500 |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=conversation_dataset["test"] |
|
) |
|
|
|
|
|
trainer.train() |
|
|