Commit
Β·
ce7aca5
1
Parent(s):
04e5963
Update app/streamlit_app.py
Browse files- app/streamlit_app.py +233 -35
app/streamlit_app.py
CHANGED
|
@@ -281,6 +281,50 @@ def create_prediction_history_chart():
|
|
| 281 |
return fig
|
| 282 |
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
def estimate_training_time_streamlit(dataset_size: int) -> dict:
|
| 285 |
"""Estimate training time for Streamlit display"""
|
| 286 |
if estimate_training_time:
|
|
@@ -351,42 +395,170 @@ def render_enhanced_training_section(df_train):
|
|
| 351 |
st.plotly_chart(fig_labels, use_container_width=True)
|
| 352 |
|
| 353 |
# Training configuration
|
| 354 |
-
with st.expander("βοΈ Training Configuration"):
|
|
|
|
|
|
|
| 355 |
col1, col2 = st.columns(2)
|
| 356 |
|
| 357 |
with col1:
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
with col2:
|
| 373 |
-
st.
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
st.
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
# Training button and execution
|
| 382 |
if st.button("πββοΈ Start Training", type="primary", use_container_width=True):
|
| 383 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
app_manager.paths['custom_data'].parent.mkdir(parents=True, exist_ok=True)
|
| 385 |
df_train.to_csv(app_manager.paths['custom_data'], index=False)
|
| 386 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
st.markdown("---")
|
| 388 |
st.markdown("### π Training Progress")
|
| 389 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
# Progress containers
|
| 391 |
progress_col1, progress_col2 = st.columns([3, 1])
|
| 392 |
|
|
@@ -402,17 +574,30 @@ def render_enhanced_training_section(df_train):
|
|
| 402 |
|
| 403 |
if DIRECT_TRAINING_AVAILABLE:
|
| 404 |
# Method 1: Direct function call (shows progress in real-time)
|
| 405 |
-
status_text.text("Status: Initializing
|
| 406 |
progress_bar.progress(5)
|
| 407 |
|
| 408 |
try:
|
| 409 |
# Create output capture
|
| 410 |
output_buffer = io.StringIO()
|
| 411 |
|
| 412 |
-
with st.spinner("Training model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
# Redirect stdout to capture progress
|
| 414 |
with contextlib.redirect_stdout(output_buffer):
|
| 415 |
-
trainer = RobustModelTrainer()
|
| 416 |
success, message = trainer.train_model(
|
| 417 |
data_path=str(app_manager.paths['custom_data'])
|
| 418 |
)
|
|
@@ -431,6 +616,10 @@ def render_enhanced_training_section(df_train):
|
|
| 431 |
st.success("π **Training Completed Successfully!**")
|
| 432 |
st.info(f"π **{message}**")
|
| 433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
# Show captured progress if available
|
| 435 |
if captured_output:
|
| 436 |
with st.expander("π Training Progress Details"):
|
|
@@ -451,18 +640,22 @@ def render_enhanced_training_section(df_train):
|
|
| 451 |
progress_bar.progress(10)
|
| 452 |
|
| 453 |
try:
|
| 454 |
-
#
|
|
|
|
| 455 |
progress_steps = [
|
| 456 |
(20, "Loading and validating data..."),
|
| 457 |
-
(
|
| 458 |
-
(
|
| 459 |
-
(
|
|
|
|
| 460 |
(95, "Saving model artifacts...")
|
| 461 |
]
|
| 462 |
|
| 463 |
-
# Start subprocess
|
| 464 |
process = subprocess.Popen(
|
| 465 |
-
[sys.executable, "model/train.py",
|
|
|
|
|
|
|
| 466 |
stdout=subprocess.PIPE,
|
| 467 |
stderr=subprocess.STDOUT,
|
| 468 |
universal_newlines=True
|
|
@@ -474,9 +667,9 @@ def render_enhanced_training_section(df_train):
|
|
| 474 |
elapsed = time.time() - start_time
|
| 475 |
time_display.text(f"Elapsed: {timedelta(seconds=int(elapsed))}")
|
| 476 |
|
| 477 |
-
# Update progress based on elapsed time
|
| 478 |
if step_idx < len(progress_steps):
|
| 479 |
-
expected_time = dataset_size * 0.
|
| 480 |
if elapsed > expected_time * (step_idx + 1) / len(progress_steps):
|
| 481 |
progress, status = progress_steps[step_idx]
|
| 482 |
progress_bar.progress(progress)
|
|
@@ -498,6 +691,10 @@ def render_enhanced_training_section(df_train):
|
|
| 498 |
if process.returncode == 0:
|
| 499 |
st.success("π **Training Completed Successfully!**")
|
| 500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
# Extract performance info from output
|
| 502 |
if stdout:
|
| 503 |
lines = stdout.strip().split('\n')
|
|
@@ -514,7 +711,8 @@ def render_enhanced_training_section(df_train):
|
|
| 514 |
|
| 515 |
else:
|
| 516 |
st.error("β **Training Failed**")
|
| 517 |
-
st.
|
|
|
|
| 518 |
|
| 519 |
except Exception as e:
|
| 520 |
st.error(f"β **Training Error:** {str(e)}")
|
|
|
|
| 281 |
return fig
|
| 282 |
|
| 283 |
|
| 284 |
+
def estimate_detailed_training_time(dataset_size: int, enable_tuning: bool, cv_folds: int, num_models: int, max_features: int) -> str:
|
| 285 |
+
"""Estimate training time based on detailed parameters"""
|
| 286 |
+
|
| 287 |
+
# Base time per sample (in seconds)
|
| 288 |
+
base_time_per_sample = 0.01
|
| 289 |
+
|
| 290 |
+
# Feature complexity multiplier
|
| 291 |
+
feature_multiplier = max_features / 5000 # Normalized to 5000 features
|
| 292 |
+
|
| 293 |
+
# Cross-validation multiplier
|
| 294 |
+
cv_multiplier = cv_folds
|
| 295 |
+
|
| 296 |
+
# Hyperparameter tuning multiplier
|
| 297 |
+
tuning_multiplier = 8 if enable_tuning else 1
|
| 298 |
+
|
| 299 |
+
# Model count multiplier
|
| 300 |
+
model_multiplier = num_models
|
| 301 |
+
|
| 302 |
+
# Calculate total time
|
| 303 |
+
total_seconds = (
|
| 304 |
+
dataset_size *
|
| 305 |
+
base_time_per_sample *
|
| 306 |
+
feature_multiplier *
|
| 307 |
+
cv_multiplier *
|
| 308 |
+
tuning_multiplier *
|
| 309 |
+
model_multiplier
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Add base overhead
|
| 313 |
+
total_seconds += 10 # Base overhead
|
| 314 |
+
|
| 315 |
+
# Format time
|
| 316 |
+
if total_seconds < 60:
|
| 317 |
+
return f"{int(total_seconds)} seconds"
|
| 318 |
+
elif total_seconds < 3600:
|
| 319 |
+
minutes = int(total_seconds // 60)
|
| 320 |
+
seconds = int(total_seconds % 60)
|
| 321 |
+
return f"{minutes}:{seconds:02d}"
|
| 322 |
+
else:
|
| 323 |
+
hours = int(total_seconds // 3600)
|
| 324 |
+
minutes = int((total_seconds % 3600) // 60)
|
| 325 |
+
return f"{hours}:{minutes:02d}:00"
|
| 326 |
+
|
| 327 |
+
|
| 328 |
def estimate_training_time_streamlit(dataset_size: int) -> dict:
|
| 329 |
"""Estimate training time for Streamlit display"""
|
| 330 |
if estimate_training_time:
|
|
|
|
| 395 |
st.plotly_chart(fig_labels, use_container_width=True)
|
| 396 |
|
| 397 |
# Training configuration
|
| 398 |
+
with st.expander("βοΈ Training Configuration", expanded=True):
|
| 399 |
+
st.markdown("**Configure your training parameters:**")
|
| 400 |
+
|
| 401 |
col1, col2 = st.columns(2)
|
| 402 |
|
| 403 |
with col1:
|
| 404 |
+
st.markdown("##### Core Settings")
|
| 405 |
+
|
| 406 |
+
# Test size slider
|
| 407 |
+
test_size = st.slider(
|
| 408 |
+
"Test Set Size (%)",
|
| 409 |
+
min_value=10,
|
| 410 |
+
max_value=50,
|
| 411 |
+
value=20,
|
| 412 |
+
step=5,
|
| 413 |
+
help="Percentage of data reserved for testing"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
# Cross-validation folds
|
| 417 |
+
cv_folds = st.slider(
|
| 418 |
+
"Cross-Validation Folds",
|
| 419 |
+
min_value=2,
|
| 420 |
+
max_value=10,
|
| 421 |
+
value=3 if dataset_size < 100 else 5,
|
| 422 |
+
step=1,
|
| 423 |
+
help="Number of folds for cross-validation"
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
# Hyperparameter tuning toggle
|
| 427 |
+
enable_tuning = st.checkbox(
|
| 428 |
+
"Enable Hyperparameter Tuning",
|
| 429 |
+
value=dataset_size >= 50,
|
| 430 |
+
help="Enable grid search for optimal parameters (recommended for 50+ samples)"
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
with col2:
|
| 434 |
+
st.markdown("##### Advanced Options")
|
| 435 |
+
|
| 436 |
+
# Model selection
|
| 437 |
+
available_models = st.multiselect(
|
| 438 |
+
"Models to Train",
|
| 439 |
+
options=["Logistic Regression", "Random Forest"],
|
| 440 |
+
default=["Logistic Regression"] if dataset_size < 50 else ["Logistic Regression", "Random Forest"],
|
| 441 |
+
help="Select which models to train and compare"
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
# Feature engineering options
|
| 445 |
+
max_features = st.selectbox(
|
| 446 |
+
"Max TF-IDF Features",
|
| 447 |
+
options=[1000, 2000, 5000, 10000, 20000],
|
| 448 |
+
index=2 if dataset_size >= 100 else 1,
|
| 449 |
+
help="Maximum number of TF-IDF features to extract"
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# N-gram range
|
| 453 |
+
ngram_option = st.selectbox(
|
| 454 |
+
"N-gram Range",
|
| 455 |
+
options=["Unigrams (1,1)", "Unigrams + Bigrams (1,2)", "Unigrams + Bigrams + Trigrams (1,3)"],
|
| 456 |
+
index=1,
|
| 457 |
+
help="Range of n-grams to include in feature extraction"
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# Convert selections to parameters
|
| 461 |
+
ngram_map = {
|
| 462 |
+
"Unigrams (1,1)": (1, 1),
|
| 463 |
+
"Unigrams + Bigrams (1,2)": (1, 2),
|
| 464 |
+
"Unigrams + Bigrams + Trigrams (1,3)": (1, 3)
|
| 465 |
+
}
|
| 466 |
+
ngram_range = ngram_map[ngram_option]
|
| 467 |
+
|
| 468 |
+
model_map = {
|
| 469 |
+
"Logistic Regression": "logistic_regression",
|
| 470 |
+
"Random Forest": "random_forest"
|
| 471 |
+
}
|
| 472 |
+
selected_models = [model_map[model] for model in available_models]
|
| 473 |
+
|
| 474 |
+
# Training summary
|
| 475 |
+
st.markdown("---")
|
| 476 |
+
st.markdown("##### π Training Summary")
|
| 477 |
+
|
| 478 |
+
summary_col1, summary_col2, summary_col3 = st.columns(3)
|
| 479 |
+
|
| 480 |
+
with summary_col1:
|
| 481 |
+
st.info(f"**Data Split:** {100-test_size}% train, {test_size}% test")
|
| 482 |
+
st.info(f"**Cross-Validation:** {cv_folds} folds")
|
| 483 |
+
|
| 484 |
+
with summary_col2:
|
| 485 |
+
tuning_status = "β
Enabled" if enable_tuning else "β Disabled"
|
| 486 |
+
st.info(f"**Hyperparameter Tuning:** {tuning_status}")
|
| 487 |
+
st.info(f"**Models:** {len(selected_models)} selected")
|
| 488 |
+
|
| 489 |
+
with summary_col3:
|
| 490 |
+
st.info(f"**Max Features:** {max_features:,}")
|
| 491 |
+
st.info(f"**N-grams:** {ngram_range}")
|
| 492 |
+
|
| 493 |
+
# Warnings and recommendations
|
| 494 |
+
if dataset_size < 20:
|
| 495 |
+
st.warning("β οΈ **Very small dataset detected:**")
|
| 496 |
+
st.warning("β’ Hyperparameter tuning automatically disabled")
|
| 497 |
+
st.warning("β’ Results may be unreliable")
|
| 498 |
+
st.warning("β’ Consider using more data for better performance")
|
| 499 |
+
|
| 500 |
+
elif dataset_size < 50:
|
| 501 |
+
if enable_tuning:
|
| 502 |
+
st.warning("β οΈ **Small dataset with hyperparameter tuning:**")
|
| 503 |
+
st.warning("β’ Training may take longer")
|
| 504 |
+
st.warning("β’ Risk of overfitting")
|
| 505 |
+
else:
|
| 506 |
+
st.info("βΉοΈ **Small dataset - good configuration**")
|
| 507 |
+
|
| 508 |
+
else:
|
| 509 |
+
if not enable_tuning:
|
| 510 |
+
st.info("βΉοΈ **Large dataset without hyperparameter tuning:**")
|
| 511 |
+
st.info("β’ Training will be faster")
|
| 512 |
+
st.info("β’ Consider enabling tuning for better performance")
|
| 513 |
+
else:
|
| 514 |
+
st.success("β
**Optimal configuration for your dataset size**")
|
| 515 |
+
|
| 516 |
+
# Estimated training time with new parameters
|
| 517 |
+
estimated_time = estimate_detailed_training_time(
|
| 518 |
+
dataset_size, enable_tuning, cv_folds, len(selected_models), max_features
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
st.markdown("---")
|
| 522 |
+
st.markdown(f"##### β±οΈ **Estimated Training Time: {estimated_time}**")
|
| 523 |
|
| 524 |
# Training button and execution
|
| 525 |
if st.button("πββοΈ Start Training", type="primary", use_container_width=True):
|
| 526 |
+
# Validate configuration
|
| 527 |
+
if not selected_models:
|
| 528 |
+
st.error("β Please select at least one model to train!")
|
| 529 |
+
return
|
| 530 |
+
|
| 531 |
+
if dataset_size < 6:
|
| 532 |
+
st.error("β Dataset too small! Minimum 6 samples required.")
|
| 533 |
+
return
|
| 534 |
+
|
| 535 |
+
# Save training data with metadata
|
| 536 |
app_manager.paths['custom_data'].parent.mkdir(parents=True, exist_ok=True)
|
| 537 |
df_train.to_csv(app_manager.paths['custom_data'], index=False)
|
| 538 |
|
| 539 |
+
# Save training configuration
|
| 540 |
+
training_config = {
|
| 541 |
+
'test_size': test_size / 100, # Convert percentage to decimal
|
| 542 |
+
'cv_folds': cv_folds,
|
| 543 |
+
'enable_tuning': enable_tuning,
|
| 544 |
+
'selected_models': selected_models,
|
| 545 |
+
'max_features': max_features,
|
| 546 |
+
'ngram_range': ngram_range,
|
| 547 |
+
'dataset_size': dataset_size
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
+
config_path = Path("/tmp/training_config.json")
|
| 551 |
+
with open(config_path, 'w') as f:
|
| 552 |
+
json.dump(training_config, f, indent=2)
|
| 553 |
+
|
| 554 |
st.markdown("---")
|
| 555 |
st.markdown("### π Training Progress")
|
| 556 |
|
| 557 |
+
# Show final configuration
|
| 558 |
+
st.info(f"π― **Training Configuration:** {len(selected_models)} model(s), "
|
| 559 |
+
f"{test_size}% test split, {cv_folds}-fold CV, "
|
| 560 |
+
f"{'with' if enable_tuning else 'without'} hyperparameter tuning")
|
| 561 |
+
|
| 562 |
# Progress containers
|
| 563 |
progress_col1, progress_col2 = st.columns([3, 1])
|
| 564 |
|
|
|
|
| 574 |
|
| 575 |
if DIRECT_TRAINING_AVAILABLE:
|
| 576 |
# Method 1: Direct function call (shows progress in real-time)
|
| 577 |
+
status_text.text("Status: Initializing training with custom config...")
|
| 578 |
progress_bar.progress(5)
|
| 579 |
|
| 580 |
try:
|
| 581 |
# Create output capture
|
| 582 |
output_buffer = io.StringIO()
|
| 583 |
|
| 584 |
+
with st.spinner("Training model with custom configuration..."):
|
| 585 |
+
# Create trainer with custom config
|
| 586 |
+
trainer = RobustModelTrainer()
|
| 587 |
+
|
| 588 |
+
# Apply custom configuration
|
| 589 |
+
trainer.test_size = training_config['test_size']
|
| 590 |
+
trainer.cv_folds = training_config['cv_folds']
|
| 591 |
+
trainer.max_features = training_config['max_features']
|
| 592 |
+
trainer.ngram_range = training_config['ngram_range']
|
| 593 |
+
|
| 594 |
+
# Filter models based on selection
|
| 595 |
+
if len(selected_models) < len(trainer.models):
|
| 596 |
+
all_models = trainer.models.copy()
|
| 597 |
+
trainer.models = {k: v for k, v in all_models.items() if k in selected_models}
|
| 598 |
+
|
| 599 |
# Redirect stdout to capture progress
|
| 600 |
with contextlib.redirect_stdout(output_buffer):
|
|
|
|
| 601 |
success, message = trainer.train_model(
|
| 602 |
data_path=str(app_manager.paths['custom_data'])
|
| 603 |
)
|
|
|
|
| 616 |
st.success("π **Training Completed Successfully!**")
|
| 617 |
st.info(f"π **{message}**")
|
| 618 |
|
| 619 |
+
# Show configuration used
|
| 620 |
+
with st.expander("βοΈ Configuration Used"):
|
| 621 |
+
st.json(training_config)
|
| 622 |
+
|
| 623 |
# Show captured progress if available
|
| 624 |
if captured_output:
|
| 625 |
with st.expander("π Training Progress Details"):
|
|
|
|
| 640 |
progress_bar.progress(10)
|
| 641 |
|
| 642 |
try:
|
| 643 |
+
# Calculate progress steps based on configuration
|
| 644 |
+
num_steps = len(selected_models) * (8 if enable_tuning else 2) * cv_folds
|
| 645 |
progress_steps = [
|
| 646 |
(20, "Loading and validating data..."),
|
| 647 |
+
(30, f"Configuring {len(selected_models)} model(s)..."),
|
| 648 |
+
(50, f"Training with {cv_folds}-fold cross-validation..."),
|
| 649 |
+
(70, "Performing hyperparameter tuning..." if enable_tuning else "Training models..."),
|
| 650 |
+
(85, "Evaluating performance..."),
|
| 651 |
(95, "Saving model artifacts...")
|
| 652 |
]
|
| 653 |
|
| 654 |
+
# Start subprocess with config
|
| 655 |
process = subprocess.Popen(
|
| 656 |
+
[sys.executable, "model/train.py",
|
| 657 |
+
"--data_path", str(app_manager.paths['custom_data']),
|
| 658 |
+
"--config_path", str(config_path)],
|
| 659 |
stdout=subprocess.PIPE,
|
| 660 |
stderr=subprocess.STDOUT,
|
| 661 |
universal_newlines=True
|
|
|
|
| 667 |
elapsed = time.time() - start_time
|
| 668 |
time_display.text(f"Elapsed: {timedelta(seconds=int(elapsed))}")
|
| 669 |
|
| 670 |
+
# Update progress based on elapsed time and configuration
|
| 671 |
if step_idx < len(progress_steps):
|
| 672 |
+
expected_time = dataset_size * 0.05 * (2 if enable_tuning else 1)
|
| 673 |
if elapsed > expected_time * (step_idx + 1) / len(progress_steps):
|
| 674 |
progress, status = progress_steps[step_idx]
|
| 675 |
progress_bar.progress(progress)
|
|
|
|
| 691 |
if process.returncode == 0:
|
| 692 |
st.success("π **Training Completed Successfully!**")
|
| 693 |
|
| 694 |
+
# Show configuration used
|
| 695 |
+
with st.expander("βοΈ Configuration Used"):
|
| 696 |
+
st.json(training_config)
|
| 697 |
+
|
| 698 |
# Extract performance info from output
|
| 699 |
if stdout:
|
| 700 |
lines = stdout.strip().split('\n')
|
|
|
|
| 711 |
|
| 712 |
else:
|
| 713 |
st.error("β **Training Failed**")
|
| 714 |
+
with st.expander("π Error Details"):
|
| 715 |
+
st.code(stdout)
|
| 716 |
|
| 717 |
except Exception as e:
|
| 718 |
st.error(f"β **Training Error:** {str(e)}")
|