project-lab / app.py
Ahmedhany1's picture
Create app.py
efd3309 verified
import gradio as gr
import cv2
import torch
import numpy as np
from facenet_pytorch import MTCNN
from transformers import pipeline
# 1) Initialize device, face detector, and HF pipelines
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mtcnn = MTCNN(keep_all=True, device=device)
age_pipe = pipeline(
"image-classification",
model="nateraw/vit-age-classifier",
device=0 if device.type=="cuda" else -1
)
gender_pipe = pipeline(
"image-classification",
model="prithivMLmods/Gender-Classifier-Mini",
device=0 if device.type=="cuda" else -1
)
# 2) Frame annotation function
def annotate(frame: np.ndarray) -> np.ndarray:
"""
Input: H×W×3 RGB frame as NumPy array
Output: same frame with boxes + age/gender labels drawn
"""
img = frame.copy()
boxes, _ = mtcnn.detect(img)
if boxes is not None:
for box in boxes:
x1, y1, x2, y2 = map(int, box)
face = img[y1:y2, x1:x2]
# HF pipelines accept NumPy RGB directly
age_pred = age_pipe(face)[0]
gender_pred = gender_pipe(face)[0]
label = (
f"{gender_pred['label']} {gender_pred['score']:.2f}, "
f"{age_pred['label']} {age_pred['score']:.2f}"
)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(
img, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2
)
return img
# 3) Build Gradio interface
iface = gr.Interface(
fn=annotate,
inputs=gr.Image(source="webcam", tool="editor", streaming=True),
outputs=gr.Image(type="numpy"),
title="Real-Time Age & Gender Prediction",
description=(
"Allow webcam access in your browser; faces will be boxed with age & gender labels."
),
live=True
)
# 4) Launch for HF Spaces (no share=True needed)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)