Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import torch | |
import numpy as np | |
from facenet_pytorch import MTCNN | |
from transformers import pipeline | |
# 1) Initialize device, face detector, and HF pipelines | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
mtcnn = MTCNN(keep_all=True, device=device) | |
age_pipe = pipeline( | |
"image-classification", | |
model="nateraw/vit-age-classifier", | |
device=0 if device.type=="cuda" else -1 | |
) | |
gender_pipe = pipeline( | |
"image-classification", | |
model="prithivMLmods/Gender-Classifier-Mini", | |
device=0 if device.type=="cuda" else -1 | |
) | |
# 2) Frame annotation function | |
def annotate(frame: np.ndarray) -> np.ndarray: | |
""" | |
Input: H×W×3 RGB frame as NumPy array | |
Output: same frame with boxes + age/gender labels drawn | |
""" | |
img = frame.copy() | |
boxes, _ = mtcnn.detect(img) | |
if boxes is not None: | |
for box in boxes: | |
x1, y1, x2, y2 = map(int, box) | |
face = img[y1:y2, x1:x2] | |
# HF pipelines accept NumPy RGB directly | |
age_pred = age_pipe(face)[0] | |
gender_pred = gender_pipe(face)[0] | |
label = ( | |
f"{gender_pred['label']} {gender_pred['score']:.2f}, " | |
f"{age_pred['label']} {age_pred['score']:.2f}" | |
) | |
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText( | |
img, label, (x1, y1 - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2 | |
) | |
return img | |
# 3) Build Gradio interface | |
iface = gr.Interface( | |
fn=annotate, | |
inputs=gr.Image(source="webcam", tool="editor", streaming=True), | |
outputs=gr.Image(type="numpy"), | |
title="Real-Time Age & Gender Prediction", | |
description=( | |
"Allow webcam access in your browser; faces will be boxed with age & gender labels." | |
), | |
live=True | |
) | |
# 4) Launch for HF Spaces (no share=True needed) | |
if __name__ == "__main__": | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |