Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +63 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, WhisperTokenizer
|
6 |
+
|
7 |
+
# Define paths to the model and processor
|
8 |
+
model_name = "userdata/whisper-largeV2-03-ms-v11-LORA-Merged"
|
9 |
+
|
10 |
+
# Load the processor and model
|
11 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
12 |
+
tokenizer = WhisperTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
14 |
+
|
15 |
+
# Check and set the device
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
# Function to chunk the audio
|
19 |
+
def chunk_audio(audio, chunk_length):
|
20 |
+
num_chunks = len(audio) // chunk_length + (1 if len(audio) % chunk_length > 0 else 0)
|
21 |
+
return [audio[i * chunk_length:(i + 1) * chunk_length] for i in range(num_chunks)]
|
22 |
+
|
23 |
+
# Function to transcribe an audio file
|
24 |
+
def transcribe(audio_path, chunk_length=16000 * 30): # 30 seconds chunks
|
25 |
+
# Load audio
|
26 |
+
speech_array, sampling_rate = torchaudio.load(audio_path)
|
27 |
+
# Resample to 16kHz
|
28 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16000)
|
29 |
+
speech = resampler(speech_array).squeeze().numpy()
|
30 |
+
|
31 |
+
# Chunk the audio if it's too long
|
32 |
+
chunks = chunk_audio(speech, chunk_length)
|
33 |
+
|
34 |
+
# Transcribe each chunk
|
35 |
+
transcriptions = []
|
36 |
+
for chunk in chunks:
|
37 |
+
# Process the audio
|
38 |
+
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt")
|
39 |
+
inputs = {key: value.to(device).to(torch.float16) for key, value in inputs.items()} # Convert to float16
|
40 |
+
|
41 |
+
# Generate token IDs
|
42 |
+
with torch.no_grad():
|
43 |
+
generated_ids = model.generate(inputs["input_features"], max_length=448)
|
44 |
+
|
45 |
+
# Decode the token IDs to text
|
46 |
+
transcription = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
47 |
+
transcriptions.append(transcription)
|
48 |
+
|
49 |
+
# Combine transcriptions
|
50 |
+
full_transcription = ' '.join(transcriptions)
|
51 |
+
return full_transcription
|
52 |
+
|
53 |
+
# Create the Gradio interface
|
54 |
+
iface = gr.Interface(
|
55 |
+
fn=transcribe, # Update to match the function name
|
56 |
+
inputs=gr.Audio(type="filepath"),
|
57 |
+
outputs=gr.Textbox(),
|
58 |
+
title="Audio Transcription App",
|
59 |
+
description="Upload an audio file to get a transcription."
|
60 |
+
)
|
61 |
+
|
62 |
+
# Launch the Gradio interface
|
63 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.41.2
|
2 |
+
gradio
|
3 |
+
torch
|
4 |
+
torchaudio
|