Spaces:
Runtime error
Runtime error
import torch | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
tokenizer = AutoTokenizer.from_pretrained("AhmedSSoliman/MarianCG-CoNaLa") | |
model = AutoModelForSeq2SeqLM.from_pretrained("AhmedSSoliman/MarianCG-CoNaLa") | |
def generate_code(NL): | |
inputs = tokenizer(NL, padding="max_length", truncation=True, max_length=512, return_tensors="pt") | |
input_ids = inputs.input_ids | |
attention_mask = inputs.attention_mask | |
outputs = model.generate(input_ids, attention_mask=attention_mask) | |
output_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return output_code | |
iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", | |
examples=[["create array containing the maximum value of respective elements of array `[2, 3, 4]` and array `[1, 5, 2]"], | |
["check if all elements in list `mylist` are identical"], | |
["enable debug mode on flask application `app`"], | |
["getting the length of `my_tuple`"], | |
['find all files in directory "/mydir" with extension ".txt"']], | |
title="MarianCG: A Code Generation Transformer Model Inspired by Machine Translation", | |
description="This is a code generation model which can generate code from the natural language description") | |
iface.launch() | |
#iface.launch(share=True) | |
#output_text = gr.outputs.Textbox() | |
#gr.Interface(generate_code,"textbox", output_text, title="MarianCG model for Code Generation", description="MarianCG model for Code Generation").launch() |