Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -59,35 +59,63 @@ tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
59 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
60 |
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
|
89 |
|
90 |
-
|
91 |
|
92 |
|
93 |
|
@@ -117,8 +145,14 @@ def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob):
|
|
117 |
sim_w = get_sim(sim_w)
|
118 |
|
119 |
|
120 |
-
LM_man =
|
121 |
-
LM_woman =
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
#LM = scorer.sentence_score(caption, reduce="mean")
|
123 |
score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
|
124 |
score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
|
|
|
59 |
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
60 |
|
61 |
|
62 |
+
|
63 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
64 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
65 |
+
|
66 |
+
def sentence_prob_mean(text):
|
67 |
+
# Tokenize the input text and add special tokens
|
68 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
69 |
+
|
70 |
+
# Obtain model outputs
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model(input_ids, labels=input_ids)
|
73 |
+
logits = outputs.logits # logits are the model outputs before applying softmax
|
74 |
+
|
75 |
+
# Shift logits and labels so that tokens are aligned:
|
76 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
77 |
+
shift_labels = input_ids[..., 1:].contiguous()
|
78 |
+
|
79 |
+
# Calculate the softmax probabilities
|
80 |
+
probs = softmax(shift_logits, dim=-1)
|
81 |
+
|
82 |
+
# Gather the probabilities of the actual token IDs
|
83 |
+
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
|
84 |
+
|
85 |
+
# Compute the mean probability across the tokens
|
86 |
+
mean_prob = torch.mean(gathered_probs).item()
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
# def cloze_prob(text):
|
91 |
+
|
92 |
+
# whole_text_encoding = tokenizer.encode(text)
|
93 |
+
# text_list = text.split()
|
94 |
+
# stem = ' '.join(text_list[:-1])
|
95 |
+
# stem_encoding = tokenizer.encode(stem)
|
96 |
+
# cw_encoding = whole_text_encoding[len(stem_encoding):]
|
97 |
+
# tokens_tensor = torch.tensor([whole_text_encoding])
|
98 |
|
99 |
+
# with torch.no_grad():
|
100 |
+
# outputs = model(tokens_tensor)
|
101 |
+
# predictions = outputs[0]
|
102 |
+
|
103 |
+
# logprobs = []
|
104 |
+
# start = -1-len(cw_encoding)
|
105 |
+
# for j in range(start,-1,1):
|
106 |
+
# raw_output = []
|
107 |
+
# for i in predictions[-1][j]:
|
108 |
+
# raw_output.append(i.item())
|
109 |
|
110 |
+
# logprobs.append(np.log(softmax(raw_output)))
|
111 |
|
112 |
|
113 |
+
# conditional_probs = []
|
114 |
+
# for cw,prob in zip(cw_encoding,logprobs):
|
115 |
+
# conditional_probs.append(prob[cw])
|
116 |
|
117 |
|
118 |
+
# return np.exp(np.sum(conditional_probs))
|
119 |
|
120 |
|
121 |
|
|
|
145 |
sim_w = get_sim(sim_w)
|
146 |
|
147 |
|
148 |
+
LM_man = sentence_prob_mean(caption_man)
|
149 |
+
LM_woman = sentence_prob_mean(caption_woman)
|
150 |
+
|
151 |
+
# LM_man = cloze_prob(caption_man)
|
152 |
+
# LM_woman = cloze_prob(caption_woman)
|
153 |
+
|
154 |
+
)
|
155 |
+
|
156 |
#LM = scorer.sentence_score(caption, reduce="mean")
|
157 |
score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
|
158 |
score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
|