Spaces:
Configuration error
Configuration error
import streamlit as st | |
from PIL import Image | |
import torch | |
from transformers import AutoModel, AutoTokenizer | |
# Model path | |
model_path = "openbmb/MiniCPM-Llama3-V-2_5" | |
# User and assistant names | |
U_NAME = "User" | |
A_NAME = "Assistant" | |
# Set page configuration | |
st.set_page_config( | |
page_title="MiniCPM-Llama3-V-2_5 Streamlit", | |
page_icon=":robot:", | |
layout="wide" | |
) | |
# Load model and tokenizer | |
def load_model_and_tokenizer(): | |
print(f"load_model_and_tokenizer from {model_path}") | |
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.float16).to(device="cuda") | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
return model, tokenizer | |
# Initialize session state | |
if 'model' not in st.session_state: | |
st.session_state.model, st.session_state.tokenizer = load_model_and_tokenizer() | |
st.session_state.model.eval() | |
print("model and tokenizer had loaded completed!") | |
# Initialize session state | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
# Sidebar settings | |
sidebar_name = st.sidebar.title("MiniCPM-Llama3-V-2_5 Streamlit") | |
max_length = st.sidebar.slider("max_length", 0, 4096, 2048, step=2) | |
repetition_penalty = st.sidebar.slider("repetition_penalty", 0.0, 2.0, 1.05, step=0.01) | |
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01) | |
top_k = st.sidebar.slider("top_k", 0, 100, 100, step=1) | |
temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.7, step=0.01) | |
# Clear chat history button | |
buttonClean = st.sidebar.button("Clear chat history", key="clean") | |
if buttonClean: | |
st.session_state.chat_history = [] | |
st.session_state.response = "" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
st.rerun() | |
# Display chat history | |
for i, message in enumerate(st.session_state.chat_history): | |
if message["role"] == "user": | |
with st.chat_message(name="user", avatar="user"): | |
if message["image"] is not None: | |
st.image(message["image"], caption='User uploaded image', width=448, use_column_width=False) | |
continue | |
elif message["content"] is not None: | |
st.markdown(message["content"]) | |
else: | |
with st.chat_message(name="model", avatar="assistant"): | |
st.markdown(message["content"]) | |
# Select mode | |
selected_mode = st.sidebar.selectbox("Select mode", ["Text", "Image"]) | |
if selected_mode == "Image": | |
# Image mode | |
uploaded_image = st.sidebar.file_uploader("Upload image", key=1, type=["jpg", "jpeg", "png"], | |
accept_multiple_files=False) | |
if uploaded_image is not None: | |
st.image(uploaded_image, caption='User uploaded image', width=468, use_column_width=False) | |
# Add uploaded image to chat history | |
st.session_state.chat_history.append({"role": "user", "content": None, "image": uploaded_image}) | |
# User input box | |
user_text = st.chat_input("Enter your question") | |
if user_text: | |
with st.chat_message(U_NAME, avatar="user"): | |
st.session_state.chat_history.append({"role": "user", "content": user_text, "image": None}) | |
st.markdown(f"{U_NAME}: {user_text}") | |
# Generate reply using the model | |
model = st.session_state.model | |
tokenizer = st.session_state.tokenizer | |
with st.chat_message(A_NAME, avatar="assistant"): | |
# If the previous message contains an image, pass the image to the model | |
if len(st.session_state.chat_history) > 1 and st.session_state.chat_history[-2]["image"] is not None: | |
uploaded_image = st.session_state.chat_history[-2]["image"] | |
imagefile = Image.open(uploaded_image).convert('RGB') | |
msgs = [{"role": "user", "content": user_text}] | |
res = model.chat(image=imagefile, msgs=msgs, context=None, tokenizer=tokenizer, | |
sampling=True, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, | |
temperature=temperature, stream=True) | |
# Collect the generated_text str | |
generated_text = st.write_stream(res) | |
st.session_state.chat_history.append({"role": "model", "content": generated_text, "image": None}) | |
st.divider() | |