Ahmed235 commited on
Commit
dc5b033
1 Parent(s): d101830

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -19,7 +19,7 @@ def predict_image(image):
19
  image.save(image_bytes, format="JPEG")
20
 
21
  # Load the image from the file-like object
22
- image = tf.keras.preprocessing.image.load_img(image_bytes, target_size=(256, 256))
23
  image = np.array(image)/255
24
  image = np.expand_dims(image, axis=0)
25
 
@@ -29,12 +29,12 @@ def predict_image(image):
29
  # Get the probability of being 'Clean' or 'Carries'
30
  probabilities = tf.nn.softmax(prediction, axis=-1)
31
  predicted_class_index = np.argmax(probabilities)
32
- if predicted_class_index == 0:
33
  predicted_label = "Clean"
34
- #predicted_probability = probabilities[0][0] * 100 # Convert to percentage
35
- else:
36
  predicted_label = "Carries"
37
- #predicted_probability = probabilities[0][1] * 100 # Convert to percentage
38
 
39
  # Return the prediction result as a dictionary
40
  return {"Predicted Label": predicted_label}
 
19
  image.save(image_bytes, format="JPEG")
20
 
21
  # Load the image from the file-like object
22
+ image = tf.keras.preprocessing.image.load_img(image_bytes, target_size=(256, 256,3))
23
  image = np.array(image)/255
24
  image = np.expand_dims(image, axis=0)
25
 
 
29
  # Get the probability of being 'Clean' or 'Carries'
30
  probabilities = tf.nn.softmax(prediction, axis=-1)
31
  predicted_class_index = np.argmax(probabilities)
32
+ if predicted_class_index == 1:
33
  predicted_label = "Clean"
34
+ predicted_probability = probabilities[0][1] * 100 # Convert to percentage
35
+ elif predicted_class_index == 0:
36
  predicted_label = "Carries"
37
+ predicted_probability = probabilities[0][0] * 100 # Convert to percentage
38
 
39
  # Return the prediction result as a dictionary
40
  return {"Predicted Label": predicted_label}