Ahmad-Moiz commited on
Commit
4cc12a7
·
1 Parent(s): ca23082

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +491 -0
app.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import time
4
+ from typing import List
5
+ import faiss
6
+ import pypdf
7
+ import random
8
+ import itertools
9
+ import text_utils
10
+ import pandas as pd
11
+ import altair as alt
12
+ import streamlit as st
13
+ from io import StringIO
14
+ from llama_index import Document
15
+ from langchain.llms import Anthropic
16
+ from langchain import HuggingFaceHub
17
+ from langchain.chains import RetrievalQA
18
+ from langchain.vectorstores import FAISS
19
+ from llama_index import LangchainEmbedding
20
+ from langchain.chat_models import ChatOpenAI
21
+ from langchain.retrievers import SVMRetriever
22
+ from langchain.chains import QAGenerationChain
23
+ from langchain.retrievers import TFIDFRetriever
24
+ from langchain.evaluation.qa import QAEvalChain
25
+ from langchain.embeddings import HuggingFaceEmbeddings
26
+ from langchain.embeddings.openai import OpenAIEmbeddings
27
+ from gpt_index import LLMPredictor, ServiceContext, GPTFaissIndex
28
+ from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
29
+ from text_utils import GRADE_DOCS_PROMPT, GRADE_ANSWER_PROMPT, GRADE_DOCS_PROMPT_FAST, GRADE_ANSWER_PROMPT_FAST, GRADE_ANSWER_PROMPT_BIAS_CHECK, GRADE_ANSWER_PROMPT_OPENAI
30
+
31
+ # Keep dataframe in memory to accumulate experimental results
32
+ if "existing_df" not in st.session_state:
33
+ summary = pd.DataFrame(columns=['chunk_chars',
34
+ 'overlap',
35
+ 'split',
36
+ 'model',
37
+ 'retriever',
38
+ 'embedding',
39
+ 'num_neighbors',
40
+ 'Latency',
41
+ 'Retrieval score',
42
+ 'Answer score'])
43
+ st.session_state.existing_df = summary
44
+ else:
45
+ summary = st.session_state.existing_df
46
+
47
+
48
+ @st.cache_data
49
+ def load_docs(files: List) -> str:
50
+ """
51
+ Load docs from files
52
+ @param files: list of files to load
53
+ @return: string of all docs concatenated
54
+ """
55
+
56
+ st.info("Reading doc ...")
57
+ all_text = ""
58
+ for file_path in files:
59
+ file_extension = os.path.splitext(file_path.name)[1]
60
+ if file_extension == ".pdf":
61
+ pdf_reader = pypdf.PdfReader(file_path)
62
+ file_content = ""
63
+ for page in pdf_reader.pages:
64
+ file_content += page.extract_text()
65
+ file_content = text_utils.clean_pdf_text(file_content)
66
+ all_text += file_content
67
+ elif file_extension == ".txt":
68
+ stringio = StringIO(file_path.getvalue().decode("utf-8"))
69
+ file_content = stringio.read()
70
+ all_text += file_content
71
+ else:
72
+ st.warning('Please provide txt or pdf.', icon="⚠")
73
+ return all_text
74
+
75
+
76
+ @st.cache_data
77
+ def generate_eval(text: str, num_questions: int, chunk: int):
78
+ """
79
+ Generate eval set
80
+ @param text: text to generate eval set from
81
+ @param num_questions: number of questions to generate
82
+ @param chunk: chunk size to draw question from in the doc
83
+ @return: eval set as JSON list
84
+ """
85
+ st.info("Generating eval set ...")
86
+ n = len(text)
87
+ starting_indices = [random.randint(0, n - chunk) for _ in range(num_questions)]
88
+ sub_sequences = [text[i:i + chunk] for i in starting_indices]
89
+ chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0))
90
+ eval_set = []
91
+ for i, b in enumerate(sub_sequences):
92
+ try:
93
+ qa = chain.run(b)
94
+ eval_set.append(qa)
95
+ except:
96
+ st.warning('Error generating question %s.' % str(i + 1), icon="⚠")
97
+ eval_set_full = list(itertools.chain.from_iterable(eval_set))
98
+ return eval_set_full
99
+
100
+
101
+ @st.cache_resource
102
+ def split_texts(text, chunk_size: int, overlap, split_method: str):
103
+ """
104
+ Split text into chunks
105
+ @param text: text to split
106
+ @param chunk_size:
107
+ @param overlap:
108
+ @param split_method:
109
+ @return: list of str splits
110
+ """
111
+ st.info("Splitting doc ...")
112
+ if split_method == "RecursiveTextSplitter":
113
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
114
+ chunk_overlap=overlap)
115
+ elif split_method == "CharacterTextSplitter":
116
+ text_splitter = CharacterTextSplitter(separator=" ",
117
+ chunk_size=chunk_size,
118
+ chunk_overlap=overlap)
119
+ else:
120
+ st.warning("Split method not recognized. Using RecursiveCharacterTextSplitter", icon="⚠")
121
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
122
+ chunk_overlap=overlap)
123
+
124
+ split_text = text_splitter.split_text(text)
125
+ return split_text
126
+
127
+
128
+ @st.cache_resource
129
+ def make_llm(model_version: str):
130
+ """
131
+ Make LLM from model version
132
+ @param model_version: model_version
133
+ @return: LLN
134
+ """
135
+ if (model_version == "gpt-3.5-turbo") or (model_version == "gpt-4"):
136
+ chosen_model = ChatOpenAI(model_name=model_version, temperature=0)
137
+ elif model_version == "anthropic":
138
+ chosen_model = Anthropic(temperature=0)
139
+ elif model_version == "flan-t5-xl":
140
+ chosen_model = HuggingFaceHub(repo_id="google/flan-t5-xl",model_kwargs={"temperature":0,"max_length":64})
141
+ else:
142
+ st.warning("Model version not recognized. Using gpt-3.5-turbo", icon="⚠")
143
+ chosen_model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
144
+ return chosen_model
145
+
146
+ @st.cache_resource
147
+ def make_retriever(splits, retriever_type, embedding_type, num_neighbors, _llm):
148
+ """
149
+ Make document retriever
150
+ @param splits: list of str splits
151
+ @param retriever_type: retriever type
152
+ @param embedding_type: embedding type
153
+ @param num_neighbors: number of neighbors for retrieval
154
+ @param _llm: model
155
+ @return: retriever
156
+ """
157
+ st.info("Making retriever ...")
158
+ # Set embeddings
159
+ if embedding_type == "OpenAI":
160
+ embedding = OpenAIEmbeddings()
161
+ elif embedding_type == "HuggingFace":
162
+ embedding = HuggingFaceEmbeddings()
163
+ else:
164
+ st.warning("Embedding type not recognized. Using OpenAI", icon="⚠")
165
+ embedding = OpenAIEmbeddings()
166
+
167
+ # Select retriever
168
+ if retriever_type == "similarity-search":
169
+ try:
170
+ vector_store = FAISS.from_texts(splits, embedding)
171
+ except ValueError:
172
+ st.warning("Error using OpenAI embeddings (disallowed TikToken token in the text). Using HuggingFace.",
173
+ icon="⚠")
174
+ vector_store = FAISS.from_texts(splits, HuggingFaceEmbeddings())
175
+ retriever_obj = vector_store.as_retriever(k=num_neighbors)
176
+ elif retriever_type == "SVM":
177
+ retriever_obj = SVMRetriever.from_texts(splits, embedding)
178
+ elif retriever_type == "TF-IDF":
179
+ retriever_obj = TFIDFRetriever.from_texts(splits)
180
+ elif retriever_type == "Llama-Index":
181
+ documents = [Document(t, LangchainEmbedding(embedding)) for t in splits]
182
+ llm_predictor = LLMPredictor(llm)
183
+ context = ServiceContext.from_defaults(chunk_size_limit=512, llm_predictor=llm_predictor)
184
+ d = 1536
185
+ faiss_index = faiss.IndexFlatL2(d)
186
+ retriever_obj = GPTFaissIndex.from_documents(documents, faiss_index=faiss_index, service_context=context)
187
+ else:
188
+ st.warning("Retriever type not recognized. Using SVM", icon="⚠")
189
+ retriever_obj = SVMRetriever.from_texts(splits, embedding)
190
+ return retriever_obj
191
+
192
+
193
+ def make_chain(llm, retriever, retriever_type: str) -> RetrievalQA:
194
+ """
195
+ Make chain
196
+ @param llm: model
197
+ @param retriever: retriever
198
+ @param retriever_type: retriever type
199
+ @return: chain (or return retriever for Llama-Index)
200
+ """
201
+ st.info("Making chain ...")
202
+ if retriever_type == "Llama-Index":
203
+ qa = retriever
204
+ else:
205
+ qa = RetrievalQA.from_chain_type(llm,
206
+ chain_type="stuff",
207
+ retriever=retriever,
208
+ input_key="question")
209
+ return qa
210
+
211
+
212
+ def grade_model_answer(predicted_dataset: List, predictions: List, grade_answer_prompt: str) -> List:
213
+ """
214
+ Grades the distilled answer based on ground truth and model predictions.
215
+ @param predicted_dataset: A list of dictionaries containing ground truth questions and answers.
216
+ @param predictions: A list of dictionaries containing model predictions for the questions.
217
+ @param grade_answer_prompt: The prompt level for the grading. Either "Fast" or "Full".
218
+ @return: A list of scores for the distilled answers.
219
+ """
220
+ # Grade the distilled answer
221
+ st.info("Grading model answer ...")
222
+ # Set the grading prompt based on the grade_answer_prompt parameter
223
+ if grade_answer_prompt == "Fast":
224
+ prompt = GRADE_ANSWER_PROMPT_FAST
225
+ elif grade_answer_prompt == "Descriptive w/ bias check":
226
+ prompt = GRADE_ANSWER_PROMPT_BIAS_CHECK
227
+ elif grade_answer_prompt == "OpenAI grading prompt":
228
+ prompt = GRADE_ANSWER_PROMPT_OPENAI
229
+ else:
230
+ prompt = GRADE_ANSWER_PROMPT
231
+
232
+ # Create an evaluation chain
233
+ eval_chain = QAEvalChain.from_llm(
234
+ llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0),
235
+ prompt=prompt
236
+ )
237
+
238
+ # Evaluate the predictions and ground truth using the evaluation chain
239
+ graded_outputs = eval_chain.evaluate(
240
+ predicted_dataset,
241
+ predictions,
242
+ question_key="question",
243
+ prediction_key="result"
244
+ )
245
+
246
+ return graded_outputs
247
+
248
+
249
+ def grade_model_retrieval(gt_dataset: List, predictions: List, grade_docs_prompt: str):
250
+ """
251
+ Grades the relevance of retrieved documents based on ground truth and model predictions.
252
+ @param gt_dataset: list of dictionaries containing ground truth questions and answers.
253
+ @param predictions: list of dictionaries containing model predictions for the questions
254
+ @param grade_docs_prompt: prompt level for the grading. Either "Fast" or "Full"
255
+ @return: list of scores for the retrieved documents.
256
+ """
257
+ # Grade the docs retrieval
258
+ st.info("Grading relevance of retrieved docs ...")
259
+
260
+ # Set the grading prompt based on the grade_docs_prompt parameter
261
+ prompt = GRADE_DOCS_PROMPT_FAST if grade_docs_prompt == "Fast" else GRADE_DOCS_PROMPT
262
+
263
+ # Create an evaluation chain
264
+ eval_chain = QAEvalChain.from_llm(
265
+ llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0),
266
+ prompt=prompt
267
+ )
268
+
269
+ # Evaluate the predictions and ground truth using the evaluation chain
270
+ graded_outputs = eval_chain.evaluate(
271
+ gt_dataset,
272
+ predictions,
273
+ question_key="question",
274
+ prediction_key="result"
275
+ )
276
+ return graded_outputs
277
+
278
+
279
+ def run_evaluation(chain, retriever, eval_set, grade_prompt, retriever_type, num_neighbors):
280
+ """
281
+ Runs evaluation on a model's performance on a given evaluation dataset.
282
+ @param chain: Model chain used for answering questions
283
+ @param retriever: Document retriever used for retrieving relevant documents
284
+ @param eval_set: List of dictionaries containing questions and corresponding ground truth answers
285
+ @param grade_prompt: String prompt used for grading model's performance
286
+ @param retriever_type: String specifying the type of retriever used
287
+ @param num_neighbors: Number of neighbors to retrieve using the retriever
288
+ @return: A tuple of four items:
289
+ - answers_grade: A dictionary containing scores for the model's answers.
290
+ - retrieval_grade: A dictionary containing scores for the model's document retrieval.
291
+ - latencies_list: A list of latencies in seconds for each question answered.
292
+ - predictions_list: A list of dictionaries containing the model's predicted answers and relevant documents for each question.
293
+ """
294
+ st.info("Running evaluation ...")
295
+ predictions_list = []
296
+ retrieved_docs = []
297
+ gt_dataset = []
298
+ latencies_list = []
299
+
300
+ for data in eval_set:
301
+
302
+ # Get answer and log latency
303
+ start_time = time.time()
304
+ if retriever_type != "Llama-Index":
305
+ predictions_list.append(chain(data))
306
+ elif retriever_type == "Llama-Index":
307
+ answer = chain.query(data["question"], similarity_top_k=num_neighbors, response_mode="tree_summarize",
308
+ use_async=True)
309
+ predictions_list.append({"question": data["question"], "answer": data["answer"], "result": answer.response})
310
+ gt_dataset.append(data)
311
+ end_time = time.time()
312
+ elapsed_time = end_time - start_time
313
+ latencies_list.append(elapsed_time)
314
+
315
+ # Retrieve docs
316
+ retrieved_doc_text = ""
317
+ if retriever_type == "Llama-Index":
318
+ for i, doc in enumerate(answer.source_nodes):
319
+ retrieved_doc_text += "Doc %s: " % str(i + 1) + doc.node.text + " "
320
+
321
+ else:
322
+ docs = retriever.get_relevant_documents(data["question"])
323
+ for i, doc in enumerate(docs):
324
+ retrieved_doc_text += "Doc %s: " % str(i + 1) + doc.page_content + " "
325
+
326
+ retrieved = {"question": data["question"], "answer": data["answer"], "result": retrieved_doc_text}
327
+ retrieved_docs.append(retrieved)
328
+
329
+ # Grade
330
+ answers_grade = grade_model_answer(gt_dataset, predictions_list, grade_prompt)
331
+ retrieval_grade = grade_model_retrieval(gt_dataset, retrieved_docs, grade_prompt)
332
+ return answers_grade, retrieval_grade, latencies_list, predictions_list
333
+
334
+
335
+ # Auth
336
+ st.sidebar.image("img/diagnostic.jpg")
337
+
338
+ oai_api_key = st.sidebar.text_input("OpenAI API Key:", type="password")
339
+ ant_api_key = st.sidebar.text_input("(Optional) Anthropic API Key:", type="password")
340
+ hf_api_key = st.sidebar.text_input("(Optional) HuggingFace API Token:", type="password")
341
+
342
+ with st.sidebar.form("user_input"):
343
+
344
+ num_eval_questions = st.select_slider("Number of eval questions",
345
+ options=[1, 5, 10, 15, 20], value=5)
346
+
347
+ chunk_chars = st.select_slider("Choose chunk size for splitting",
348
+ options=[500, 750, 1000, 1500, 2000], value=1000)
349
+
350
+ overlap = st.select_slider("Choose overlap for splitting",
351
+ options=[0, 50, 100, 150, 200], value=100)
352
+
353
+ split_method = st.radio("Split method",
354
+ ("RecursiveTextSplitter",
355
+ "CharacterTextSplitter"),
356
+ index=0)
357
+
358
+ model = st.radio("Choose model",
359
+ ("gpt-3.5-turbo",
360
+ "gpt-4",
361
+ "anthropic"),
362
+ # Error raised by inference API: Model google/flan-t5-xl time out
363
+ #"flan-t5-xl"),
364
+ index=0)
365
+
366
+ retriever_type = st.radio("Choose retriever",
367
+ ("TF-IDF",
368
+ "SVM",
369
+ "Llama-Index",
370
+ "similarity-search"),
371
+ index=3)
372
+
373
+ num_neighbors = st.select_slider("Choose # chunks to retrieve",
374
+ options=[3, 4, 5, 6, 7, 8])
375
+
376
+ embeddings = st.radio("Choose embeddings",
377
+ ("HuggingFace",
378
+ "OpenAI"),
379
+ index=1)
380
+
381
+ grade_prompt = st.radio("Grading style prompt",
382
+ ("Fast",
383
+ "Descriptive",
384
+ "Descriptive w/ bias check",
385
+ "OpenAI grading prompt"),
386
+ index=0)
387
+
388
+ submitted = st.form_submit_button("Submit evaluation")
389
+
390
+ st.sidebar.write("By: [Sentient](https://twitter.com/sentient)")
391
+
392
+ # App
393
+ st.header("Auto-evaluator")
394
+ st.info(
395
+ "`I am an evaluation tool for question-answering built on LangChain. Given documents, I will auto-generate a question-answer eval "
396
+ "set and evaluate using the selected chain settings. Experiments with different configurations are logged. "
397
+ "Optionally, provide your own eval set (as a JSON, see docs/karpathy-pod-eval.json for an example). If you don't have acess to GPT-4 or Anthropic, you can use our free hosted app here: https://autoevaluator.langchain.com/`")
398
+
399
+ with st.form(key='file_inputs'):
400
+ uploaded_file = st.file_uploader("Please upload a file to evaluate (.txt or .pdf): ",
401
+ type=['pdf', 'txt'],
402
+ accept_multiple_files=True)
403
+
404
+ uploaded_eval_set = st.file_uploader("[Optional] Please upload eval set (.json): ",
405
+ type=['json'],
406
+ accept_multiple_files=False)
407
+
408
+ submitted = st.form_submit_button("Submit files")
409
+
410
+ if uploaded_file and oai_api_key:
411
+
412
+ os.environ["OPENAI_API_KEY"] = oai_api_key
413
+ os.environ["ANTHROPIC_API_KEY"] = ant_api_key
414
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_api_key
415
+
416
+ # Load docs
417
+ text = load_docs(uploaded_file)
418
+ # Generate num_eval_questions questions, each from context of 3k chars randomly selected
419
+ if not uploaded_eval_set:
420
+ eval_set = generate_eval(text, num_eval_questions, 3000)
421
+ else:
422
+ eval_set = json.loads(uploaded_eval_set.read())
423
+ # Split text
424
+ splits = split_texts(text, chunk_chars, overlap, split_method)
425
+ # Make LLM
426
+ llm = make_llm(model)
427
+ # Make vector DB
428
+ retriever = make_retriever(splits, retriever_type, embeddings, num_neighbors, llm)
429
+ # Make chain
430
+ qa_chain = make_chain(llm, retriever, retriever_type)
431
+ # Grade model
432
+ graded_answers, graded_retrieval, latency, predictions = run_evaluation(qa_chain, retriever, eval_set, grade_prompt,
433
+ retriever_type, num_neighbors)
434
+
435
+ # Assemble outputs
436
+ d = pd.DataFrame(predictions)
437
+ d['answer score'] = [g['text'] for g in graded_answers]
438
+ d['docs score'] = [g['text'] for g in graded_retrieval]
439
+ d['latency'] = latency
440
+
441
+ # Summary statistics
442
+ mean_latency = d['latency'].mean()
443
+ correct_answer_count = len([text for text in d['answer score'] if "INCORRECT" not in text])
444
+ correct_docs_count = len([text for text in d['docs score'] if "Context is relevant: True" in text])
445
+ percentage_answer = (correct_answer_count / len(graded_answers)) * 100
446
+ percentage_docs = (correct_docs_count / len(graded_retrieval)) * 100
447
+
448
+ st.subheader("Run Results")
449
+ st.info(
450
+ "`I will grade the chain based on: 1/ the relevance of the retrived documents relative to the question and 2/ "
451
+ "the summarized answer relative to the ground truth answer. You can see (and change) to prompts used for "
452
+ "grading in text_utils`")
453
+ st.dataframe(data=d, use_container_width=True)
454
+
455
+ # Accumulate results
456
+ st.subheader("Aggregate Results")
457
+ st.info(
458
+ "`Retrieval and answer scores are percentage of retrived documents deemed relevant by the LLM grader ("
459
+ "relative to the question) and percentage of summarized answers deemed relevant (relative to ground truth "
460
+ "answer), respectively. The size of point correponds to the latency (in seconds) of retrieval + answer "
461
+ "summarization (larger circle = slower).`")
462
+ new_row = pd.DataFrame({'chunk_chars': [chunk_chars],
463
+ 'overlap': [overlap],
464
+ 'split': [split_method],
465
+ 'model': [model],
466
+ 'retriever': [retriever_type],
467
+ 'embedding': [embeddings],
468
+ 'num_neighbors': [num_neighbors],
469
+ 'Latency': [mean_latency],
470
+ 'Retrieval score': [percentage_docs],
471
+ 'Answer score': [percentage_answer]})
472
+ summary = pd.concat([summary, new_row], ignore_index=True)
473
+ st.dataframe(data=summary, use_container_width=True)
474
+ st.session_state.existing_df = summary
475
+
476
+ # Dataframe for visualization
477
+ show = summary.reset_index().copy()
478
+ show.columns = ['expt number', 'chunk_chars', 'overlap',
479
+ 'split', 'model', 'retriever', 'embedding', 'num_neighbors', 'Latency', 'Retrieval score',
480
+ 'Answer score']
481
+ show['expt number'] = show['expt number'].apply(lambda x: "Expt #: " + str(x + 1))
482
+ c = alt.Chart(show).mark_circle().encode(x='Retrieval score',
483
+ y='Answer score',
484
+ size=alt.Size('Latency'),
485
+ color='expt number',
486
+ tooltip=['expt number', 'Retrieval score', 'Latency', 'Answer score'])
487
+ st.altair_chart(c, use_container_width=True, theme="streamlit")
488
+
489
+ else:
490
+
491
+ st.warning("Please input file and API key(s)!")