Spaces:
Sleeping
Sleeping
Ahmad-Moiz
commited on
Commit
·
4cc12a7
1
Parent(s):
ca23082
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
from typing import List
|
5 |
+
import faiss
|
6 |
+
import pypdf
|
7 |
+
import random
|
8 |
+
import itertools
|
9 |
+
import text_utils
|
10 |
+
import pandas as pd
|
11 |
+
import altair as alt
|
12 |
+
import streamlit as st
|
13 |
+
from io import StringIO
|
14 |
+
from llama_index import Document
|
15 |
+
from langchain.llms import Anthropic
|
16 |
+
from langchain import HuggingFaceHub
|
17 |
+
from langchain.chains import RetrievalQA
|
18 |
+
from langchain.vectorstores import FAISS
|
19 |
+
from llama_index import LangchainEmbedding
|
20 |
+
from langchain.chat_models import ChatOpenAI
|
21 |
+
from langchain.retrievers import SVMRetriever
|
22 |
+
from langchain.chains import QAGenerationChain
|
23 |
+
from langchain.retrievers import TFIDFRetriever
|
24 |
+
from langchain.evaluation.qa import QAEvalChain
|
25 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
26 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
27 |
+
from gpt_index import LLMPredictor, ServiceContext, GPTFaissIndex
|
28 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
29 |
+
from text_utils import GRADE_DOCS_PROMPT, GRADE_ANSWER_PROMPT, GRADE_DOCS_PROMPT_FAST, GRADE_ANSWER_PROMPT_FAST, GRADE_ANSWER_PROMPT_BIAS_CHECK, GRADE_ANSWER_PROMPT_OPENAI
|
30 |
+
|
31 |
+
# Keep dataframe in memory to accumulate experimental results
|
32 |
+
if "existing_df" not in st.session_state:
|
33 |
+
summary = pd.DataFrame(columns=['chunk_chars',
|
34 |
+
'overlap',
|
35 |
+
'split',
|
36 |
+
'model',
|
37 |
+
'retriever',
|
38 |
+
'embedding',
|
39 |
+
'num_neighbors',
|
40 |
+
'Latency',
|
41 |
+
'Retrieval score',
|
42 |
+
'Answer score'])
|
43 |
+
st.session_state.existing_df = summary
|
44 |
+
else:
|
45 |
+
summary = st.session_state.existing_df
|
46 |
+
|
47 |
+
|
48 |
+
@st.cache_data
|
49 |
+
def load_docs(files: List) -> str:
|
50 |
+
"""
|
51 |
+
Load docs from files
|
52 |
+
@param files: list of files to load
|
53 |
+
@return: string of all docs concatenated
|
54 |
+
"""
|
55 |
+
|
56 |
+
st.info("Reading doc ...")
|
57 |
+
all_text = ""
|
58 |
+
for file_path in files:
|
59 |
+
file_extension = os.path.splitext(file_path.name)[1]
|
60 |
+
if file_extension == ".pdf":
|
61 |
+
pdf_reader = pypdf.PdfReader(file_path)
|
62 |
+
file_content = ""
|
63 |
+
for page in pdf_reader.pages:
|
64 |
+
file_content += page.extract_text()
|
65 |
+
file_content = text_utils.clean_pdf_text(file_content)
|
66 |
+
all_text += file_content
|
67 |
+
elif file_extension == ".txt":
|
68 |
+
stringio = StringIO(file_path.getvalue().decode("utf-8"))
|
69 |
+
file_content = stringio.read()
|
70 |
+
all_text += file_content
|
71 |
+
else:
|
72 |
+
st.warning('Please provide txt or pdf.', icon="⚠")
|
73 |
+
return all_text
|
74 |
+
|
75 |
+
|
76 |
+
@st.cache_data
|
77 |
+
def generate_eval(text: str, num_questions: int, chunk: int):
|
78 |
+
"""
|
79 |
+
Generate eval set
|
80 |
+
@param text: text to generate eval set from
|
81 |
+
@param num_questions: number of questions to generate
|
82 |
+
@param chunk: chunk size to draw question from in the doc
|
83 |
+
@return: eval set as JSON list
|
84 |
+
"""
|
85 |
+
st.info("Generating eval set ...")
|
86 |
+
n = len(text)
|
87 |
+
starting_indices = [random.randint(0, n - chunk) for _ in range(num_questions)]
|
88 |
+
sub_sequences = [text[i:i + chunk] for i in starting_indices]
|
89 |
+
chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0))
|
90 |
+
eval_set = []
|
91 |
+
for i, b in enumerate(sub_sequences):
|
92 |
+
try:
|
93 |
+
qa = chain.run(b)
|
94 |
+
eval_set.append(qa)
|
95 |
+
except:
|
96 |
+
st.warning('Error generating question %s.' % str(i + 1), icon="⚠")
|
97 |
+
eval_set_full = list(itertools.chain.from_iterable(eval_set))
|
98 |
+
return eval_set_full
|
99 |
+
|
100 |
+
|
101 |
+
@st.cache_resource
|
102 |
+
def split_texts(text, chunk_size: int, overlap, split_method: str):
|
103 |
+
"""
|
104 |
+
Split text into chunks
|
105 |
+
@param text: text to split
|
106 |
+
@param chunk_size:
|
107 |
+
@param overlap:
|
108 |
+
@param split_method:
|
109 |
+
@return: list of str splits
|
110 |
+
"""
|
111 |
+
st.info("Splitting doc ...")
|
112 |
+
if split_method == "RecursiveTextSplitter":
|
113 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
|
114 |
+
chunk_overlap=overlap)
|
115 |
+
elif split_method == "CharacterTextSplitter":
|
116 |
+
text_splitter = CharacterTextSplitter(separator=" ",
|
117 |
+
chunk_size=chunk_size,
|
118 |
+
chunk_overlap=overlap)
|
119 |
+
else:
|
120 |
+
st.warning("Split method not recognized. Using RecursiveCharacterTextSplitter", icon="⚠")
|
121 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
|
122 |
+
chunk_overlap=overlap)
|
123 |
+
|
124 |
+
split_text = text_splitter.split_text(text)
|
125 |
+
return split_text
|
126 |
+
|
127 |
+
|
128 |
+
@st.cache_resource
|
129 |
+
def make_llm(model_version: str):
|
130 |
+
"""
|
131 |
+
Make LLM from model version
|
132 |
+
@param model_version: model_version
|
133 |
+
@return: LLN
|
134 |
+
"""
|
135 |
+
if (model_version == "gpt-3.5-turbo") or (model_version == "gpt-4"):
|
136 |
+
chosen_model = ChatOpenAI(model_name=model_version, temperature=0)
|
137 |
+
elif model_version == "anthropic":
|
138 |
+
chosen_model = Anthropic(temperature=0)
|
139 |
+
elif model_version == "flan-t5-xl":
|
140 |
+
chosen_model = HuggingFaceHub(repo_id="google/flan-t5-xl",model_kwargs={"temperature":0,"max_length":64})
|
141 |
+
else:
|
142 |
+
st.warning("Model version not recognized. Using gpt-3.5-turbo", icon="⚠")
|
143 |
+
chosen_model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
144 |
+
return chosen_model
|
145 |
+
|
146 |
+
@st.cache_resource
|
147 |
+
def make_retriever(splits, retriever_type, embedding_type, num_neighbors, _llm):
|
148 |
+
"""
|
149 |
+
Make document retriever
|
150 |
+
@param splits: list of str splits
|
151 |
+
@param retriever_type: retriever type
|
152 |
+
@param embedding_type: embedding type
|
153 |
+
@param num_neighbors: number of neighbors for retrieval
|
154 |
+
@param _llm: model
|
155 |
+
@return: retriever
|
156 |
+
"""
|
157 |
+
st.info("Making retriever ...")
|
158 |
+
# Set embeddings
|
159 |
+
if embedding_type == "OpenAI":
|
160 |
+
embedding = OpenAIEmbeddings()
|
161 |
+
elif embedding_type == "HuggingFace":
|
162 |
+
embedding = HuggingFaceEmbeddings()
|
163 |
+
else:
|
164 |
+
st.warning("Embedding type not recognized. Using OpenAI", icon="⚠")
|
165 |
+
embedding = OpenAIEmbeddings()
|
166 |
+
|
167 |
+
# Select retriever
|
168 |
+
if retriever_type == "similarity-search":
|
169 |
+
try:
|
170 |
+
vector_store = FAISS.from_texts(splits, embedding)
|
171 |
+
except ValueError:
|
172 |
+
st.warning("Error using OpenAI embeddings (disallowed TikToken token in the text). Using HuggingFace.",
|
173 |
+
icon="⚠")
|
174 |
+
vector_store = FAISS.from_texts(splits, HuggingFaceEmbeddings())
|
175 |
+
retriever_obj = vector_store.as_retriever(k=num_neighbors)
|
176 |
+
elif retriever_type == "SVM":
|
177 |
+
retriever_obj = SVMRetriever.from_texts(splits, embedding)
|
178 |
+
elif retriever_type == "TF-IDF":
|
179 |
+
retriever_obj = TFIDFRetriever.from_texts(splits)
|
180 |
+
elif retriever_type == "Llama-Index":
|
181 |
+
documents = [Document(t, LangchainEmbedding(embedding)) for t in splits]
|
182 |
+
llm_predictor = LLMPredictor(llm)
|
183 |
+
context = ServiceContext.from_defaults(chunk_size_limit=512, llm_predictor=llm_predictor)
|
184 |
+
d = 1536
|
185 |
+
faiss_index = faiss.IndexFlatL2(d)
|
186 |
+
retriever_obj = GPTFaissIndex.from_documents(documents, faiss_index=faiss_index, service_context=context)
|
187 |
+
else:
|
188 |
+
st.warning("Retriever type not recognized. Using SVM", icon="⚠")
|
189 |
+
retriever_obj = SVMRetriever.from_texts(splits, embedding)
|
190 |
+
return retriever_obj
|
191 |
+
|
192 |
+
|
193 |
+
def make_chain(llm, retriever, retriever_type: str) -> RetrievalQA:
|
194 |
+
"""
|
195 |
+
Make chain
|
196 |
+
@param llm: model
|
197 |
+
@param retriever: retriever
|
198 |
+
@param retriever_type: retriever type
|
199 |
+
@return: chain (or return retriever for Llama-Index)
|
200 |
+
"""
|
201 |
+
st.info("Making chain ...")
|
202 |
+
if retriever_type == "Llama-Index":
|
203 |
+
qa = retriever
|
204 |
+
else:
|
205 |
+
qa = RetrievalQA.from_chain_type(llm,
|
206 |
+
chain_type="stuff",
|
207 |
+
retriever=retriever,
|
208 |
+
input_key="question")
|
209 |
+
return qa
|
210 |
+
|
211 |
+
|
212 |
+
def grade_model_answer(predicted_dataset: List, predictions: List, grade_answer_prompt: str) -> List:
|
213 |
+
"""
|
214 |
+
Grades the distilled answer based on ground truth and model predictions.
|
215 |
+
@param predicted_dataset: A list of dictionaries containing ground truth questions and answers.
|
216 |
+
@param predictions: A list of dictionaries containing model predictions for the questions.
|
217 |
+
@param grade_answer_prompt: The prompt level for the grading. Either "Fast" or "Full".
|
218 |
+
@return: A list of scores for the distilled answers.
|
219 |
+
"""
|
220 |
+
# Grade the distilled answer
|
221 |
+
st.info("Grading model answer ...")
|
222 |
+
# Set the grading prompt based on the grade_answer_prompt parameter
|
223 |
+
if grade_answer_prompt == "Fast":
|
224 |
+
prompt = GRADE_ANSWER_PROMPT_FAST
|
225 |
+
elif grade_answer_prompt == "Descriptive w/ bias check":
|
226 |
+
prompt = GRADE_ANSWER_PROMPT_BIAS_CHECK
|
227 |
+
elif grade_answer_prompt == "OpenAI grading prompt":
|
228 |
+
prompt = GRADE_ANSWER_PROMPT_OPENAI
|
229 |
+
else:
|
230 |
+
prompt = GRADE_ANSWER_PROMPT
|
231 |
+
|
232 |
+
# Create an evaluation chain
|
233 |
+
eval_chain = QAEvalChain.from_llm(
|
234 |
+
llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0),
|
235 |
+
prompt=prompt
|
236 |
+
)
|
237 |
+
|
238 |
+
# Evaluate the predictions and ground truth using the evaluation chain
|
239 |
+
graded_outputs = eval_chain.evaluate(
|
240 |
+
predicted_dataset,
|
241 |
+
predictions,
|
242 |
+
question_key="question",
|
243 |
+
prediction_key="result"
|
244 |
+
)
|
245 |
+
|
246 |
+
return graded_outputs
|
247 |
+
|
248 |
+
|
249 |
+
def grade_model_retrieval(gt_dataset: List, predictions: List, grade_docs_prompt: str):
|
250 |
+
"""
|
251 |
+
Grades the relevance of retrieved documents based on ground truth and model predictions.
|
252 |
+
@param gt_dataset: list of dictionaries containing ground truth questions and answers.
|
253 |
+
@param predictions: list of dictionaries containing model predictions for the questions
|
254 |
+
@param grade_docs_prompt: prompt level for the grading. Either "Fast" or "Full"
|
255 |
+
@return: list of scores for the retrieved documents.
|
256 |
+
"""
|
257 |
+
# Grade the docs retrieval
|
258 |
+
st.info("Grading relevance of retrieved docs ...")
|
259 |
+
|
260 |
+
# Set the grading prompt based on the grade_docs_prompt parameter
|
261 |
+
prompt = GRADE_DOCS_PROMPT_FAST if grade_docs_prompt == "Fast" else GRADE_DOCS_PROMPT
|
262 |
+
|
263 |
+
# Create an evaluation chain
|
264 |
+
eval_chain = QAEvalChain.from_llm(
|
265 |
+
llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0),
|
266 |
+
prompt=prompt
|
267 |
+
)
|
268 |
+
|
269 |
+
# Evaluate the predictions and ground truth using the evaluation chain
|
270 |
+
graded_outputs = eval_chain.evaluate(
|
271 |
+
gt_dataset,
|
272 |
+
predictions,
|
273 |
+
question_key="question",
|
274 |
+
prediction_key="result"
|
275 |
+
)
|
276 |
+
return graded_outputs
|
277 |
+
|
278 |
+
|
279 |
+
def run_evaluation(chain, retriever, eval_set, grade_prompt, retriever_type, num_neighbors):
|
280 |
+
"""
|
281 |
+
Runs evaluation on a model's performance on a given evaluation dataset.
|
282 |
+
@param chain: Model chain used for answering questions
|
283 |
+
@param retriever: Document retriever used for retrieving relevant documents
|
284 |
+
@param eval_set: List of dictionaries containing questions and corresponding ground truth answers
|
285 |
+
@param grade_prompt: String prompt used for grading model's performance
|
286 |
+
@param retriever_type: String specifying the type of retriever used
|
287 |
+
@param num_neighbors: Number of neighbors to retrieve using the retriever
|
288 |
+
@return: A tuple of four items:
|
289 |
+
- answers_grade: A dictionary containing scores for the model's answers.
|
290 |
+
- retrieval_grade: A dictionary containing scores for the model's document retrieval.
|
291 |
+
- latencies_list: A list of latencies in seconds for each question answered.
|
292 |
+
- predictions_list: A list of dictionaries containing the model's predicted answers and relevant documents for each question.
|
293 |
+
"""
|
294 |
+
st.info("Running evaluation ...")
|
295 |
+
predictions_list = []
|
296 |
+
retrieved_docs = []
|
297 |
+
gt_dataset = []
|
298 |
+
latencies_list = []
|
299 |
+
|
300 |
+
for data in eval_set:
|
301 |
+
|
302 |
+
# Get answer and log latency
|
303 |
+
start_time = time.time()
|
304 |
+
if retriever_type != "Llama-Index":
|
305 |
+
predictions_list.append(chain(data))
|
306 |
+
elif retriever_type == "Llama-Index":
|
307 |
+
answer = chain.query(data["question"], similarity_top_k=num_neighbors, response_mode="tree_summarize",
|
308 |
+
use_async=True)
|
309 |
+
predictions_list.append({"question": data["question"], "answer": data["answer"], "result": answer.response})
|
310 |
+
gt_dataset.append(data)
|
311 |
+
end_time = time.time()
|
312 |
+
elapsed_time = end_time - start_time
|
313 |
+
latencies_list.append(elapsed_time)
|
314 |
+
|
315 |
+
# Retrieve docs
|
316 |
+
retrieved_doc_text = ""
|
317 |
+
if retriever_type == "Llama-Index":
|
318 |
+
for i, doc in enumerate(answer.source_nodes):
|
319 |
+
retrieved_doc_text += "Doc %s: " % str(i + 1) + doc.node.text + " "
|
320 |
+
|
321 |
+
else:
|
322 |
+
docs = retriever.get_relevant_documents(data["question"])
|
323 |
+
for i, doc in enumerate(docs):
|
324 |
+
retrieved_doc_text += "Doc %s: " % str(i + 1) + doc.page_content + " "
|
325 |
+
|
326 |
+
retrieved = {"question": data["question"], "answer": data["answer"], "result": retrieved_doc_text}
|
327 |
+
retrieved_docs.append(retrieved)
|
328 |
+
|
329 |
+
# Grade
|
330 |
+
answers_grade = grade_model_answer(gt_dataset, predictions_list, grade_prompt)
|
331 |
+
retrieval_grade = grade_model_retrieval(gt_dataset, retrieved_docs, grade_prompt)
|
332 |
+
return answers_grade, retrieval_grade, latencies_list, predictions_list
|
333 |
+
|
334 |
+
|
335 |
+
# Auth
|
336 |
+
st.sidebar.image("img/diagnostic.jpg")
|
337 |
+
|
338 |
+
oai_api_key = st.sidebar.text_input("OpenAI API Key:", type="password")
|
339 |
+
ant_api_key = st.sidebar.text_input("(Optional) Anthropic API Key:", type="password")
|
340 |
+
hf_api_key = st.sidebar.text_input("(Optional) HuggingFace API Token:", type="password")
|
341 |
+
|
342 |
+
with st.sidebar.form("user_input"):
|
343 |
+
|
344 |
+
num_eval_questions = st.select_slider("Number of eval questions",
|
345 |
+
options=[1, 5, 10, 15, 20], value=5)
|
346 |
+
|
347 |
+
chunk_chars = st.select_slider("Choose chunk size for splitting",
|
348 |
+
options=[500, 750, 1000, 1500, 2000], value=1000)
|
349 |
+
|
350 |
+
overlap = st.select_slider("Choose overlap for splitting",
|
351 |
+
options=[0, 50, 100, 150, 200], value=100)
|
352 |
+
|
353 |
+
split_method = st.radio("Split method",
|
354 |
+
("RecursiveTextSplitter",
|
355 |
+
"CharacterTextSplitter"),
|
356 |
+
index=0)
|
357 |
+
|
358 |
+
model = st.radio("Choose model",
|
359 |
+
("gpt-3.5-turbo",
|
360 |
+
"gpt-4",
|
361 |
+
"anthropic"),
|
362 |
+
# Error raised by inference API: Model google/flan-t5-xl time out
|
363 |
+
#"flan-t5-xl"),
|
364 |
+
index=0)
|
365 |
+
|
366 |
+
retriever_type = st.radio("Choose retriever",
|
367 |
+
("TF-IDF",
|
368 |
+
"SVM",
|
369 |
+
"Llama-Index",
|
370 |
+
"similarity-search"),
|
371 |
+
index=3)
|
372 |
+
|
373 |
+
num_neighbors = st.select_slider("Choose # chunks to retrieve",
|
374 |
+
options=[3, 4, 5, 6, 7, 8])
|
375 |
+
|
376 |
+
embeddings = st.radio("Choose embeddings",
|
377 |
+
("HuggingFace",
|
378 |
+
"OpenAI"),
|
379 |
+
index=1)
|
380 |
+
|
381 |
+
grade_prompt = st.radio("Grading style prompt",
|
382 |
+
("Fast",
|
383 |
+
"Descriptive",
|
384 |
+
"Descriptive w/ bias check",
|
385 |
+
"OpenAI grading prompt"),
|
386 |
+
index=0)
|
387 |
+
|
388 |
+
submitted = st.form_submit_button("Submit evaluation")
|
389 |
+
|
390 |
+
st.sidebar.write("By: [Sentient](https://twitter.com/sentient)")
|
391 |
+
|
392 |
+
# App
|
393 |
+
st.header("Auto-evaluator")
|
394 |
+
st.info(
|
395 |
+
"`I am an evaluation tool for question-answering built on LangChain. Given documents, I will auto-generate a question-answer eval "
|
396 |
+
"set and evaluate using the selected chain settings. Experiments with different configurations are logged. "
|
397 |
+
"Optionally, provide your own eval set (as a JSON, see docs/karpathy-pod-eval.json for an example). If you don't have acess to GPT-4 or Anthropic, you can use our free hosted app here: https://autoevaluator.langchain.com/`")
|
398 |
+
|
399 |
+
with st.form(key='file_inputs'):
|
400 |
+
uploaded_file = st.file_uploader("Please upload a file to evaluate (.txt or .pdf): ",
|
401 |
+
type=['pdf', 'txt'],
|
402 |
+
accept_multiple_files=True)
|
403 |
+
|
404 |
+
uploaded_eval_set = st.file_uploader("[Optional] Please upload eval set (.json): ",
|
405 |
+
type=['json'],
|
406 |
+
accept_multiple_files=False)
|
407 |
+
|
408 |
+
submitted = st.form_submit_button("Submit files")
|
409 |
+
|
410 |
+
if uploaded_file and oai_api_key:
|
411 |
+
|
412 |
+
os.environ["OPENAI_API_KEY"] = oai_api_key
|
413 |
+
os.environ["ANTHROPIC_API_KEY"] = ant_api_key
|
414 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_api_key
|
415 |
+
|
416 |
+
# Load docs
|
417 |
+
text = load_docs(uploaded_file)
|
418 |
+
# Generate num_eval_questions questions, each from context of 3k chars randomly selected
|
419 |
+
if not uploaded_eval_set:
|
420 |
+
eval_set = generate_eval(text, num_eval_questions, 3000)
|
421 |
+
else:
|
422 |
+
eval_set = json.loads(uploaded_eval_set.read())
|
423 |
+
# Split text
|
424 |
+
splits = split_texts(text, chunk_chars, overlap, split_method)
|
425 |
+
# Make LLM
|
426 |
+
llm = make_llm(model)
|
427 |
+
# Make vector DB
|
428 |
+
retriever = make_retriever(splits, retriever_type, embeddings, num_neighbors, llm)
|
429 |
+
# Make chain
|
430 |
+
qa_chain = make_chain(llm, retriever, retriever_type)
|
431 |
+
# Grade model
|
432 |
+
graded_answers, graded_retrieval, latency, predictions = run_evaluation(qa_chain, retriever, eval_set, grade_prompt,
|
433 |
+
retriever_type, num_neighbors)
|
434 |
+
|
435 |
+
# Assemble outputs
|
436 |
+
d = pd.DataFrame(predictions)
|
437 |
+
d['answer score'] = [g['text'] for g in graded_answers]
|
438 |
+
d['docs score'] = [g['text'] for g in graded_retrieval]
|
439 |
+
d['latency'] = latency
|
440 |
+
|
441 |
+
# Summary statistics
|
442 |
+
mean_latency = d['latency'].mean()
|
443 |
+
correct_answer_count = len([text for text in d['answer score'] if "INCORRECT" not in text])
|
444 |
+
correct_docs_count = len([text for text in d['docs score'] if "Context is relevant: True" in text])
|
445 |
+
percentage_answer = (correct_answer_count / len(graded_answers)) * 100
|
446 |
+
percentage_docs = (correct_docs_count / len(graded_retrieval)) * 100
|
447 |
+
|
448 |
+
st.subheader("Run Results")
|
449 |
+
st.info(
|
450 |
+
"`I will grade the chain based on: 1/ the relevance of the retrived documents relative to the question and 2/ "
|
451 |
+
"the summarized answer relative to the ground truth answer. You can see (and change) to prompts used for "
|
452 |
+
"grading in text_utils`")
|
453 |
+
st.dataframe(data=d, use_container_width=True)
|
454 |
+
|
455 |
+
# Accumulate results
|
456 |
+
st.subheader("Aggregate Results")
|
457 |
+
st.info(
|
458 |
+
"`Retrieval and answer scores are percentage of retrived documents deemed relevant by the LLM grader ("
|
459 |
+
"relative to the question) and percentage of summarized answers deemed relevant (relative to ground truth "
|
460 |
+
"answer), respectively. The size of point correponds to the latency (in seconds) of retrieval + answer "
|
461 |
+
"summarization (larger circle = slower).`")
|
462 |
+
new_row = pd.DataFrame({'chunk_chars': [chunk_chars],
|
463 |
+
'overlap': [overlap],
|
464 |
+
'split': [split_method],
|
465 |
+
'model': [model],
|
466 |
+
'retriever': [retriever_type],
|
467 |
+
'embedding': [embeddings],
|
468 |
+
'num_neighbors': [num_neighbors],
|
469 |
+
'Latency': [mean_latency],
|
470 |
+
'Retrieval score': [percentage_docs],
|
471 |
+
'Answer score': [percentage_answer]})
|
472 |
+
summary = pd.concat([summary, new_row], ignore_index=True)
|
473 |
+
st.dataframe(data=summary, use_container_width=True)
|
474 |
+
st.session_state.existing_df = summary
|
475 |
+
|
476 |
+
# Dataframe for visualization
|
477 |
+
show = summary.reset_index().copy()
|
478 |
+
show.columns = ['expt number', 'chunk_chars', 'overlap',
|
479 |
+
'split', 'model', 'retriever', 'embedding', 'num_neighbors', 'Latency', 'Retrieval score',
|
480 |
+
'Answer score']
|
481 |
+
show['expt number'] = show['expt number'].apply(lambda x: "Expt #: " + str(x + 1))
|
482 |
+
c = alt.Chart(show).mark_circle().encode(x='Retrieval score',
|
483 |
+
y='Answer score',
|
484 |
+
size=alt.Size('Latency'),
|
485 |
+
color='expt number',
|
486 |
+
tooltip=['expt number', 'Retrieval score', 'Latency', 'Answer score'])
|
487 |
+
st.altair_chart(c, use_container_width=True, theme="streamlit")
|
488 |
+
|
489 |
+
else:
|
490 |
+
|
491 |
+
st.warning("Please input file and API key(s)!")
|