Spaces:
Configuration error
Configuration error
Commit
·
38e1f76
1
Parent(s):
bdbf35c
Update app.py
Browse files
app.py
CHANGED
@@ -1,472 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import time
|
4 |
-
from typing import List
|
5 |
-
import faiss
|
6 |
-
import pypdf
|
7 |
-
import random
|
8 |
-
import itertools
|
9 |
-
import text_utils
|
10 |
-
import pandas as pd
|
11 |
-
import altair as alt
|
12 |
-
import streamlit as st
|
13 |
-
from io import StringIO
|
14 |
-
from llama_index import Document
|
15 |
-
from langchain.llms import Anthropic
|
16 |
-
from langchain.chains import RetrievalQA
|
17 |
-
from langchain.vectorstores import FAISS
|
18 |
-
from llama_index import LangchainEmbedding
|
19 |
-
from langchain.chat_models import ChatOpenAI
|
20 |
-
from langchain.retrievers import SVMRetriever
|
21 |
-
from langchain.chains import QAGenerationChain
|
22 |
-
from langchain.retrievers import TFIDFRetriever
|
23 |
-
from langchain.evaluation.qa import QAEvalChain
|
24 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
25 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
26 |
-
from gpt_index import LLMPredictor, ServiceContext, GPTFaissIndex
|
27 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
28 |
-
from text_utils import GRADE_DOCS_PROMPT, GRADE_ANSWER_PROMPT, GRADE_DOCS_PROMPT_FAST, GRADE_ANSWER_PROMPT_FAST, GRADE_ANSWER_PROMPT_BIAS_CHECK, GRADE_ANSWER_PROMPT_OPENAI
|
29 |
-
|
30 |
-
# Keep dataframe in memory to accumulate experimental results
|
31 |
-
if "existing_df" not in st.session_state:
|
32 |
-
summary = pd.DataFrame(columns=['chunk_chars',
|
33 |
-
'overlap',
|
34 |
-
'split',
|
35 |
-
'model',
|
36 |
-
'retriever',
|
37 |
-
'embedding',
|
38 |
-
'num_neighbors',
|
39 |
-
'Latency',
|
40 |
-
'Retrieval score',
|
41 |
-
'Answer score'])
|
42 |
-
st.session_state.existing_df = summary
|
43 |
-
else:
|
44 |
-
summary = st.session_state.existing_df
|
45 |
-
|
46 |
-
|
47 |
-
@st.cache_data
|
48 |
-
def load_docs(files: List) -> str:
|
49 |
-
"""
|
50 |
-
Load docs from files
|
51 |
-
@param files: list of files to load
|
52 |
-
@return: string of all docs concatenated
|
53 |
-
"""
|
54 |
-
|
55 |
-
st.info("Reading doc ...")
|
56 |
-
all_text = ""
|
57 |
-
for file_path in files:
|
58 |
-
file_extension = os.path.splitext(file_path.name)[1]
|
59 |
-
if file_extension == ".pdf":
|
60 |
-
pdf_reader = pypdf.PdfReader(file_path)
|
61 |
-
file_content = ""
|
62 |
-
for page in pdf_reader.pages:
|
63 |
-
file_content += page.extract_text()
|
64 |
-
file_content = text_utils.clean_pdf_text(file_content)
|
65 |
-
all_text += file_content
|
66 |
-
elif file_extension == ".txt":
|
67 |
-
stringio = StringIO(file_path.getvalue().decode("utf-8"))
|
68 |
-
file_content = stringio.read()
|
69 |
-
all_text += file_content
|
70 |
-
else:
|
71 |
-
st.warning('Please provide txt or pdf.', icon="⚠")
|
72 |
-
return all_text
|
73 |
-
|
74 |
-
#skaks
|
75 |
-
@st.cache_data
|
76 |
-
def generate_eval(text: str, num_questions: int, chunk: int):
|
77 |
-
"""
|
78 |
-
Generate eval set
|
79 |
-
@param text: text to generate eval set from
|
80 |
-
@param num_questions: number of questions to generate
|
81 |
-
@param chunk: chunk size to draw question from in the doc
|
82 |
-
@return: eval set as JSON list
|
83 |
-
"""
|
84 |
-
st.info("Generating eval set ...")
|
85 |
-
n = len(text)
|
86 |
-
starting_indices = [random.randint(0, n - chunk) for _ in range(num_questions)]
|
87 |
-
sub_sequences = [text[i:i + chunk] for i in starting_indices]
|
88 |
-
chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0))
|
89 |
-
eval_set = []
|
90 |
-
for i, b in enumerate(sub_sequences):
|
91 |
-
try:
|
92 |
-
qa = chain.run(b)
|
93 |
-
eval_set.append(qa)
|
94 |
-
except:
|
95 |
-
st.warning('Error generating question %s.' % str(i + 1), icon="⚠")
|
96 |
-
eval_set_full = list(itertools.chain.from_iterable(eval_set))
|
97 |
-
return eval_set_full
|
98 |
-
|
99 |
-
|
100 |
-
@st.cache_resource
|
101 |
-
def split_texts(text, chunk_size: int, overlap, split_method: str):
|
102 |
-
"""
|
103 |
-
Split text into chunks
|
104 |
-
@param text: text to split
|
105 |
-
@param chunk_size:
|
106 |
-
@param overlap:
|
107 |
-
@param split_method:
|
108 |
-
@return: list of str splits
|
109 |
-
"""
|
110 |
-
st.info("Splitting doc ...")
|
111 |
-
if split_method == "RecursiveTextSplitter":
|
112 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
|
113 |
-
chunk_overlap=overlap)
|
114 |
-
elif split_method == "CharacterTextSplitter":
|
115 |
-
text_splitter = CharacterTextSplitter(separator=" ",
|
116 |
-
chunk_size=chunk_size,
|
117 |
-
chunk_overlap=overlap)
|
118 |
-
else:
|
119 |
-
st.warning("Split method not recognized. Using RecursiveCharacterTextSplitter", icon="⚠")
|
120 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
|
121 |
-
chunk_overlap=overlap)
|
122 |
-
|
123 |
-
split_text = text_splitter.split_text(text)
|
124 |
-
return split_text
|
125 |
-
|
126 |
-
|
127 |
-
@st.cache_resource
|
128 |
-
def make_llm(model_version: str):
|
129 |
-
"""
|
130 |
-
Make LLM from model version
|
131 |
-
@param model_version: model_version
|
132 |
-
@return: LLN
|
133 |
-
"""
|
134 |
-
if (model_version == "gpt-3.5-turbo") or (model_version == "gpt-4"):
|
135 |
-
chosen_model = ChatOpenAI(model_name=model_version, temperature=0)
|
136 |
-
elif model_version == "anthropic":
|
137 |
-
chosen_model = Anthropic(temperature=0)
|
138 |
-
else:
|
139 |
-
st.warning("Model version not recognized. Using gpt-3.5-turbo", icon="⚠")
|
140 |
-
chosen_model = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
141 |
-
return chosen_model
|
142 |
-
|
143 |
-
|
144 |
-
@st.cache_resource
|
145 |
-
def make_retriever(splits, retriever_type, embedding_type, num_neighbors, _llm):
|
146 |
-
"""
|
147 |
-
Make document retriever
|
148 |
-
@param splits: list of str splits
|
149 |
-
@param retriever_type: retriever type
|
150 |
-
@param embedding_type: embedding type
|
151 |
-
@param num_neighbors: number of neighbors for retrieval
|
152 |
-
@param _llm: model
|
153 |
-
@return: retriever
|
154 |
-
"""
|
155 |
-
st.info("Making retriever ...")
|
156 |
-
# Set embeddings
|
157 |
-
if embedding_type == "OpenAI":
|
158 |
-
embedding = OpenAIEmbeddings()
|
159 |
-
elif embedding_type == "HuggingFace":
|
160 |
-
embedding = HuggingFaceEmbeddings()
|
161 |
-
else:
|
162 |
-
st.warning("Embedding type not recognized. Using OpenAI", icon="⚠")
|
163 |
-
embedding = OpenAIEmbeddings()
|
164 |
-
|
165 |
-
# Select retriever
|
166 |
-
if retriever_type == "similarity-search":
|
167 |
-
try:
|
168 |
-
vector_store = FAISS.from_texts(splits, embedding)
|
169 |
-
except ValueError:
|
170 |
-
st.warning("Error using OpenAI embeddings (disallowed TikToken token in the text). Using HuggingFace.",
|
171 |
-
icon="⚠")
|
172 |
-
vector_store = FAISS.from_texts(splits, HuggingFaceEmbeddings())
|
173 |
-
retriever_obj = vector_store.as_retriever(k=num_neighbors)
|
174 |
-
elif retriever_type == "SVM":
|
175 |
-
retriever_obj = SVMRetriever.from_texts(splits, embedding)
|
176 |
-
elif retriever_type == "TF-IDF":
|
177 |
-
retriever_obj = TFIDFRetriever.from_texts(splits)
|
178 |
-
elif retriever_type == "Llama-Index":
|
179 |
-
documents = [Document(t, LangchainEmbedding(embedding)) for t in splits]
|
180 |
-
llm_predictor = LLMPredictor(llm)
|
181 |
-
context = ServiceContext.from_defaults(chunk_size_limit=512, llm_predictor=llm_predictor)
|
182 |
-
d = 1536
|
183 |
-
faiss_index = faiss.IndexFlatL2(d)
|
184 |
-
retriever_obj = GPTFaissIndex.from_documents(documents, faiss_index=faiss_index, service_context=context)
|
185 |
-
else:
|
186 |
-
st.warning("Retriever type not recognized. Using SVM", icon="⚠")
|
187 |
-
retriever_obj = SVMRetriever.from_texts(splits, embedding)
|
188 |
-
return retriever_obj
|
189 |
-
|
190 |
-
|
191 |
-
def make_chain(llm, retriever, retriever_type: str) -> RetrievalQA:
|
192 |
-
"""
|
193 |
-
Make chain
|
194 |
-
@param llm: model
|
195 |
-
@param retriever: retriever
|
196 |
-
@param retriever_type: retriever type
|
197 |
-
@return: chain (or return retriever for Llama-Index)
|
198 |
-
"""
|
199 |
-
st.info("Making chain ...")
|
200 |
-
if retriever_type == "Llama-Index":
|
201 |
-
qa = retriever
|
202 |
-
else:
|
203 |
-
qa = RetrievalQA.from_chain_type(llm,
|
204 |
-
chain_type="stuff",
|
205 |
-
retriever=retriever,
|
206 |
-
input_key="question")
|
207 |
-
return qa
|
208 |
-
|
209 |
-
|
210 |
-
def grade_model_answer(predicted_dataset: List, predictions: List, grade_answer_prompt: str) -> List:
|
211 |
-
"""
|
212 |
-
Grades the distilled answer based on ground truth and model predictions.
|
213 |
-
@param predicted_dataset: A list of dictionaries containing ground truth questions and answers.
|
214 |
-
@param predictions: A list of dictionaries containing model predictions for the questions.
|
215 |
-
@param grade_answer_prompt: The prompt level for the grading. Either "Fast" or "Full".
|
216 |
-
@return: A list of scores for the distilled answers.
|
217 |
-
"""
|
218 |
-
# Grade the distilled answer
|
219 |
-
st.info("Grading model answer ...")
|
220 |
-
# Set the grading prompt based on the grade_answer_prompt parameter
|
221 |
-
if grade_answer_prompt == "Fast":
|
222 |
-
prompt = GRADE_ANSWER_PROMPT_FAST
|
223 |
-
elif grade_answer_prompt == "Descriptive w/ bias check":
|
224 |
-
prompt = GRADE_ANSWER_PROMPT_BIAS_CHECK
|
225 |
-
elif grade_answer_prompt == "OpenAI grading prompt":
|
226 |
-
prompt = GRADE_ANSWER_PROMPT_OPENAI
|
227 |
-
else:
|
228 |
-
prompt = GRADE_ANSWER_PROMPT
|
229 |
-
|
230 |
-
# Create an evaluation chain
|
231 |
-
eval_chain = QAEvalChain.from_llm(
|
232 |
-
llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0),
|
233 |
-
prompt=prompt
|
234 |
-
)
|
235 |
-
|
236 |
-
# Evaluate the predictions and ground truth using the evaluation chain
|
237 |
-
graded_outputs = eval_chain.evaluate(
|
238 |
-
predicted_dataset,
|
239 |
-
predictions,
|
240 |
-
question_key="question",
|
241 |
-
prediction_key="result"
|
242 |
-
)
|
243 |
-
|
244 |
-
return graded_outputs
|
245 |
-
|
246 |
-
|
247 |
-
def grade_model_retrieval(gt_dataset: List, predictions: List, grade_docs_prompt: str):
|
248 |
-
"""
|
249 |
-
Grades the relevance of retrieved documents based on ground truth and model predictions.
|
250 |
-
@param gt_dataset: list of dictionaries containing ground truth questions and answers.
|
251 |
-
@param predictions: list of dictionaries containing model predictions for the questions
|
252 |
-
@param grade_docs_prompt: prompt level for the grading. Either "Fast" or "Full"
|
253 |
-
@return: list of scores for the retrieved documents.
|
254 |
-
"""
|
255 |
-
# Grade the docs retrieval
|
256 |
-
st.info("Grading relevance of retrieved docs ...")
|
257 |
-
|
258 |
-
# Set the grading prompt based on the grade_docs_prompt parameter
|
259 |
-
prompt = GRADE_DOCS_PROMPT_FAST if grade_docs_prompt == "Fast" else GRADE_DOCS_PROMPT
|
260 |
-
|
261 |
-
# Create an evaluation chain
|
262 |
-
eval_chain = QAEvalChain.from_llm(
|
263 |
-
llm=ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0),
|
264 |
-
prompt=prompt
|
265 |
-
)
|
266 |
-
|
267 |
-
# Evaluate the predictions and ground truth using the evaluation chain
|
268 |
-
graded_outputs = eval_chain.evaluate(
|
269 |
-
gt_dataset,
|
270 |
-
predictions,
|
271 |
-
question_key="question",
|
272 |
-
prediction_key="result"
|
273 |
-
)
|
274 |
-
return graded_outputs
|
275 |
-
|
276 |
-
|
277 |
-
def run_evaluation(chain, retriever, eval_set, grade_prompt, retriever_type, num_neighbors):
|
278 |
-
"""
|
279 |
-
Runs evaluation on a model's performance on a given evaluation dataset.
|
280 |
-
@param chain: Model chain used for answering questions
|
281 |
-
@param retriever: Document retriever used for retrieving relevant documents
|
282 |
-
@param eval_set: List of dictionaries containing questions and corresponding ground truth answers
|
283 |
-
@param grade_prompt: String prompt used for grading model's performance
|
284 |
-
@param retriever_type: String specifying the type of retriever used
|
285 |
-
@param num_neighbors: Number of neighbors to retrieve using the retriever
|
286 |
-
@return: A tuple of four items:
|
287 |
-
- answers_grade: A dictionary containing scores for the model's answers.
|
288 |
-
- retrieval_grade: A dictionary containing scores for the model's document retrieval.
|
289 |
-
- latencies_list: A list of latencies in seconds for each question answered.
|
290 |
-
- predictions_list: A list of dictionaries containing the model's predicted answers and relevant documents for each question.
|
291 |
-
"""
|
292 |
-
st.info("Running evaluation ...")
|
293 |
-
predictions_list = []
|
294 |
-
retrieved_docs = []
|
295 |
-
gt_dataset = []
|
296 |
-
latencies_list = []
|
297 |
-
|
298 |
-
for data in eval_set:
|
299 |
-
|
300 |
-
# Get answer and log latency
|
301 |
-
start_time = time.time()
|
302 |
-
if retriever_type != "Llama-Index":
|
303 |
-
predictions_list.append(chain(data))
|
304 |
-
elif retriever_type == "Llama-Index":
|
305 |
-
answer = chain.query(data["question"], similarity_top_k=num_neighbors, response_mode="tree_summarize",
|
306 |
-
use_async=True)
|
307 |
-
predictions_list.append({"question": data["question"], "answer": data["answer"], "result": answer.response})
|
308 |
-
gt_dataset.append(data)
|
309 |
-
end_time = time.time()
|
310 |
-
elapsed_time = end_time - start_time
|
311 |
-
latencies_list.append(elapsed_time)
|
312 |
-
|
313 |
-
# Retrieve docs
|
314 |
-
retrieved_doc_text = ""
|
315 |
-
if retriever_type == "Llama-Index":
|
316 |
-
for i, doc in enumerate(answer.source_nodes):
|
317 |
-
retrieved_doc_text += "Doc %s: " % str(i + 1) + doc.node.text + " "
|
318 |
-
|
319 |
-
else:
|
320 |
-
docs = retriever.get_relevant_documents(data["question"])
|
321 |
-
for i, doc in enumerate(docs):
|
322 |
-
retrieved_doc_text += "Doc %s: " % str(i + 1) + doc.page_content + " "
|
323 |
-
|
324 |
-
retrieved = {"question": data["question"], "answer": data["answer"], "result": retrieved_doc_text}
|
325 |
-
retrieved_docs.append(retrieved)
|
326 |
-
|
327 |
-
# Grade
|
328 |
-
answers_grade = grade_model_answer(gt_dataset, predictions_list, grade_prompt)
|
329 |
-
retrieval_grade = grade_model_retrieval(gt_dataset, retrieved_docs, grade_prompt)
|
330 |
-
return answers_grade, retrieval_grade, latencies_list, predictions_list
|
331 |
-
|
332 |
-
|
333 |
-
# Auth
|
334 |
-
st.sidebar.image("img/diagnostic.jpg")
|
335 |
-
|
336 |
-
with st.sidebar.form("user_input"):
|
337 |
-
num_eval_questions = st.select_slider("Number of eval questions",
|
338 |
-
options=[1, 5, 10, 15, 20], value=5)
|
339 |
-
|
340 |
-
chunk_chars = st.select_slider("Choose chunk size for splitting",
|
341 |
-
options=[500, 750, 1000, 1500, 2000], value=1000)
|
342 |
-
|
343 |
-
overlap = st.select_slider("Choose overlap for splitting",
|
344 |
-
options=[0, 50, 100, 150, 200], value=100)
|
345 |
-
|
346 |
-
split_method = st.radio("Split method",
|
347 |
-
("RecursiveTextSplitter",
|
348 |
-
"CharacterTextSplitter"),
|
349 |
-
index=0)
|
350 |
-
|
351 |
-
model = st.radio("Choose model",
|
352 |
-
("gpt-3.5-turbo",
|
353 |
-
"gpt-4",
|
354 |
-
"anthropic"),
|
355 |
-
index=0)
|
356 |
-
|
357 |
-
retriever_type = st.radio("Choose retriever",
|
358 |
-
("TF-IDF",
|
359 |
-
"SVM",
|
360 |
-
"Llama-Index",
|
361 |
-
"similarity-search"),
|
362 |
-
index=3)
|
363 |
-
|
364 |
-
num_neighbors = st.select_slider("Choose # chunks to retrieve",
|
365 |
-
options=[3, 4, 5, 6, 7, 8])
|
366 |
-
|
367 |
-
embeddings = st.radio("Choose embeddings",
|
368 |
-
("HuggingFace",
|
369 |
-
"OpenAI"),
|
370 |
-
index=1)
|
371 |
-
|
372 |
-
grade_prompt = st.radio("Grading style prompt",
|
373 |
-
("Fast",
|
374 |
-
"Descriptive",
|
375 |
-
"Descriptive w/ bias check",
|
376 |
-
"OpenAI grading prompt"),
|
377 |
-
index=0)
|
378 |
-
|
379 |
-
submitted = st.form_submit_button("Submit evaluation")
|
380 |
-
|
381 |
-
# App
|
382 |
-
st.header("Auto-evaluator")
|
383 |
-
st.info(
|
384 |
-
"`I am an evaluation tool for question-answering. Given documents, I will auto-generate a question-answer eval "
|
385 |
-
"set and evaluate using the selected chain settings. Experiments with different configurations are logged. "
|
386 |
-
"Optionally, provide your own eval set (as a JSON, see docs/karpathy-pod-eval.json for an example).`")
|
387 |
-
|
388 |
-
with st.form(key='file_inputs'):
|
389 |
-
uploaded_file = st.file_uploader("Please upload a file to evaluate (.txt or .pdf): ",
|
390 |
-
type=['pdf', 'txt'],
|
391 |
-
accept_multiple_files=True)
|
392 |
-
|
393 |
-
uploaded_eval_set = st.file_uploader("[Optional] Please upload eval set (.json): ",
|
394 |
-
type=['json'],
|
395 |
-
accept_multiple_files=False)
|
396 |
-
|
397 |
-
submitted = st.form_submit_button("Submit files")
|
398 |
-
|
399 |
-
if uploaded_file:
|
400 |
-
|
401 |
-
# Load docs
|
402 |
-
text = load_docs(uploaded_file)
|
403 |
-
# Generate num_eval_questions questions, each from context of 3k chars randomly selected
|
404 |
-
if not uploaded_eval_set:
|
405 |
-
eval_set = generate_eval(text, num_eval_questions, 3000)
|
406 |
-
else:
|
407 |
-
eval_set = json.loads(uploaded_eval_set.read())
|
408 |
-
# Split text
|
409 |
-
splits = split_texts(text, chunk_chars, overlap, split_method)
|
410 |
-
# Make LLM
|
411 |
-
llm = make_llm(model)
|
412 |
-
# Make vector DB
|
413 |
-
retriever = make_retriever(splits, retriever_type, embeddings, num_neighbors, llm)
|
414 |
-
# Make chain
|
415 |
-
qa_chain = make_chain(llm, retriever, retriever_type)
|
416 |
-
# Grade model
|
417 |
-
graded_answers, graded_retrieval, latency, predictions = run_evaluation(qa_chain, retriever, eval_set, grade_prompt,
|
418 |
-
retriever_type, num_neighbors)
|
419 |
-
|
420 |
-
# Assemble outputs
|
421 |
-
d = pd.DataFrame(predictions)
|
422 |
-
d['answer score'] = [g['text'] for g in graded_answers]
|
423 |
-
d['docs score'] = [g['text'] for g in graded_retrieval]
|
424 |
-
d['latency'] = latency
|
425 |
-
|
426 |
-
# Summary statistics
|
427 |
-
mean_latency = d['latency'].mean()
|
428 |
-
correct_answer_count = len([text for text in d['answer score'] if "INCORRECT" not in text])
|
429 |
-
correct_docs_count = len([text for text in d['docs score'] if "Context is relevant: True" in text])
|
430 |
-
percentage_answer = (correct_answer_count / len(graded_answers)) * 100
|
431 |
-
percentage_docs = (correct_docs_count / len(graded_retrieval)) * 100
|
432 |
-
|
433 |
-
st.subheader("Run Results")
|
434 |
-
st.info(
|
435 |
-
"`I will grade the chain based on: 1/ the relevance of the retrived documents relative to the question and 2/ "
|
436 |
-
"the summarized answer relative to the ground truth answer. You can see (and change) to prompts used for "
|
437 |
-
"grading in text_utils`")
|
438 |
-
st.dataframe(data=d, use_container_width=True)
|
439 |
-
|
440 |
-
# Accumulate results
|
441 |
-
st.subheader("Aggregate Results")
|
442 |
-
st.info(
|
443 |
-
"`Retrieval and answer scores are percentage of retrived documents deemed relevant by the LLM grader ("
|
444 |
-
"relative to the question) and percentage of summarized answers deemed relevant (relative to ground truth "
|
445 |
-
"answer), respectively. The size of point correponds to the latency (in seconds) of retrieval + answer "
|
446 |
-
"summarization (larger circle = slower).`")
|
447 |
-
new_row = pd.DataFrame({'chunk_chars': [chunk_chars],
|
448 |
-
'overlap': [overlap],
|
449 |
-
'split': [split_method],
|
450 |
-
'model': [model],
|
451 |
-
'retriever': [retriever_type],
|
452 |
-
'embedding': [embeddings],
|
453 |
-
'num_neighbors': [num_neighbors],
|
454 |
-
'Latency': [mean_latency],
|
455 |
-
'Retrieval score': [percentage_docs],
|
456 |
-
'Answer score': [percentage_answer]})
|
457 |
-
summary = pd.concat([summary, new_row], ignore_index=True)
|
458 |
-
st.dataframe(data=summary, use_container_width=True)
|
459 |
-
st.session_state.existing_df = summary
|
460 |
-
|
461 |
-
# Dataframe for visualization
|
462 |
-
show = summary.reset_index().copy()
|
463 |
-
show.columns = ['expt number', 'chunk_chars', 'overlap',
|
464 |
-
'split', 'model', 'retriever', 'embedding', 'num_neighbors', 'Latency', 'Retrieval score',
|
465 |
-
'Answer score']
|
466 |
-
show['expt number'] = show['expt number'].apply(lambda x: "Expt #: " + str(x + 1))
|
467 |
-
c = alt.Chart(show).mark_circle().encode(x='Retrieval score',
|
468 |
-
y='Answer score',
|
469 |
-
size=alt.Size('Latency'),
|
470 |
-
color='expt number',
|
471 |
-
tooltip=['expt number', 'Retrieval score', 'Latency', 'Answer score'])
|
472 |
-
st.altair_chart(c, use_container_width=True, theme="streamlit")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|