Spaces:
Runtime error
Runtime error
import os, sys | |
from libs import * | |
from .layers import * | |
from .modules import * | |
from .bblocks import * | |
class LightSEResNet18(nn.Module): | |
def __init__(self, | |
base_channels = 64, | |
): | |
super(LightSEResNet18, self).__init__() | |
self.bblock = LightSEResBlock | |
self.stem = nn.Sequential( | |
nn.Conv1d( | |
1, base_channels, | |
kernel_size = 15, padding = 7, stride = 2, | |
), | |
nn.BatchNorm1d(base_channels), | |
nn.ReLU(), | |
nn.MaxPool1d( | |
kernel_size = 3, padding = 1, stride = 2, | |
), | |
) | |
self.stage_0 = nn.Sequential( | |
self.bblock(base_channels), | |
self.bblock(base_channels), | |
) | |
self.stage_1 = nn.Sequential( | |
self.bblock(base_channels*1, downsample = True), | |
self.bblock(base_channels*2), | |
) | |
self.stage_2 = nn.Sequential( | |
self.bblock(base_channels*2, downsample = True), | |
self.bblock(base_channels*4), | |
) | |
self.stage_3 = nn.Sequential( | |
self.bblock(base_channels*4, downsample = True), | |
self.bblock(base_channels*8), | |
) | |
self.pool = nn.AdaptiveAvgPool1d(1) | |
def forward(self, | |
input, | |
): | |
output = self.stem(input) | |
output = self.stage_0(output) | |
output = self.stage_1(output) | |
output = self.stage_2(output) | |
output = self.stage_3(output) | |
output = self.pool(output) | |
return output |