Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import lightgbm as lgb | |
| import numpy as np | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.preprocessing import LabelEncoder | |
| import os | |
| import torch | |
| from torchvision import models, transforms | |
| from PIL import Image | |
| # --------------------------- | |
| # Crop Recommendation Setup | |
| # --------------------------- | |
| url = "https://raw.githubusercontent.com/sehajpreet22/data/refs/heads/main/cleaned_crop_data_with_pbi_labels.csv" | |
| data = pd.read_csv(url) | |
| X = data.drop('label', axis=1) | |
| y = data['label'] | |
| le = LabelEncoder() | |
| y_encoded = le.fit_transform(y) | |
| X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3, random_state=0) | |
| model = lgb.LGBMClassifier() | |
| model.fit(X_train, y_train) | |
| def predict_crop(ਨਾਈਟ੍ਰੋਜਨ, ਫਾਸਫੋਰਸ, ਪੋਟਾਸ਼ੀਅਮ, ਤਾਪਮਾਨ, ਨਮੀ, ਮਿੱਟੀ_pH, ਵਰਖਾ): | |
| input_data = np.array([[ਨਾਈਟ੍ਰੋਜਨ, ਫਾਸਫੋਰਸ, ਪੋਟਾਸ਼ੀਅਮ, ਤਾਪਮਾਨ, ਨਮੀ, ਮਿੱਟੀ_pH, ਵਰਖਾ]]) | |
| pred = model.predict(input_data)[0] | |
| crop_name = le.inverse_transform([pred])[0] | |
| image_path = f"crop_images/{crop_name}.jpeg" | |
| if not os.path.exists(image_path): | |
| image_path = None | |
| return image_path, f"🌾ਤੁਹਾਡੇ ਖੇਤ ਲਈ ਸੁਝਾਈ ਗਈ ਫਸਲ: *{crop_name}*" | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🌾 **ਕਿਹੜੀ ਫਸਲ ਲਾਈਏ?**") | |
| with gr.Tabs(): | |
| with gr.Row(): | |
| ਨਾਈਟ੍ਰੋਜਨ= gr.Slider(0, 140, step=1, label="ਨਾਈਟ੍ਰੋਜਨ (kg/ha)") | |
| ਫਾਸਫੋਰਸ= gr.Slider(5, 95, step=1, label="ਫਾਸਫੋਰਸ (kg/ha)") | |
| ਪੋਟਾਸ਼ੀਅਮ= gr.Slider(5, 82, step=1, label="ਪੋਟਾਸ਼ੀਅਮ (kg/ha)") | |
| with gr.Row(): | |
| ਤਾਪਮਾਨ= gr.Slider(15.63, 36.32, step=0.1, label="ਤਾਪਮਾਨ (°C)") | |
| ਨਮੀ= gr.Slider(14.2,99.98 , step=1, label="ਨਮੀ (%)") | |
| with gr.Row(): | |
| ਮਿੱਟੀ_pH= gr.Slider(0, 14, step=0.1, label="ਮਿੱਟੀ ਦਾ pH") | |
| ਵਰਖਾ= gr.Slider(20.21, 253.72, step=1, label="ਵਰਖਾ (mm)") | |
| predict_btn = gr.Button("ਫਸਲ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰੋ") | |
| crop_image_output = gr.Image(label="🌿 ਫਸਲ ਦੀ ਤਸਵੀਰ") | |
| crop_text_output = gr.Markdown() | |
| predict_btn.click(fn=predict_crop, | |
| inputs=[ਨਾਈਟ੍ਰੋਜਨ,ਫਾਸਫੋਰਸ,ਪੋਟਾਸ਼ੀਅਮ,ਤਾਪਮਾਨ,ਨਮੀ,ਮਿੱਟੀ_pH,ਵਰਖਾ], | |
| outputs=[crop_image_output, crop_text_output]) | |
| demo.launch() |